12.01.2015 Views

PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A /C

PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A /C

PROGRAMMABLE PRECISION SHUNT REGULATOR TL431/A /C

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> REFERENCES<br />

TO-92 (TOP VIEW)<br />

The <strong>TL431</strong> is three-terminal adjustable shunt regulator<br />

with specified termal stability.<br />

The output voltage may be set to any value between<br />

V REF (Approx. 2.5V) and 36V with two external resistors.<br />

This device has a typical output inpedance of 0.2Ω.<br />

Active output circuitry provides a very sharp turn-on<br />

characteristic, making this device excellent<br />

replacement for zener diodes in many application.<br />

SOT-23<br />

1.<br />

SOT-89<br />

1 3.<br />

1.<br />

FEATURES<br />

1. REF 2. ANODE 3. CATHODE<br />

● Equivalent Full Range Temperature Coefficient 50PPM/℃<br />

● Temperature Compensated For Operation Over<br />

Full Rate Operating Temperature Range<br />

● Adjustable Output Voltage<br />

● Fast Turn-on Response<br />

● Sink Current Capability 1mA to 100mA<br />

● Low (0.2Ω Typ.) Dynamic Output Impedance<br />

● Low Output Noise<br />

FUNCTION BLOCK DIAGRAM<br />

ORDERING INFORMATION<br />

Device Marking<br />

<strong>TL431</strong><br />

<strong>TL431</strong>-A<br />

<strong>TL431</strong><br />

<strong>TL431</strong>-A<br />

<strong>TL431</strong>-C<br />

<strong>TL431</strong>SF<br />

<strong>TL431</strong>-ASF<br />

<strong>TL431</strong>-CSF<br />

<strong>TL431</strong>F<br />

<strong>TL431</strong>-AF<br />

<strong>TL431</strong>-CF<br />

<strong>TL431</strong>-C<br />

431<br />

* Packing label is<br />

different as Vref<br />

431<br />

* Packing label is<br />

different as Vref<br />

Package<br />

TO-92<br />

SOT-23<br />

SOT-89<br />

BLOCK DIAGRAM<br />

REFERENCE<br />

CATHODE<br />

CATHODE(K)<br />

2.5V REF<br />

REFERENCE(R)<br />

ANODE(A)<br />

ANODE<br />

Oct. 2003 - Rev 03<br />

1<br />

HTC


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

EQUIVALENT SCHEMATIC<br />

Reference<br />

Q10<br />

Cathode<br />

Q3<br />

Q2<br />

C1<br />

R21<br />

R20<br />

Q8<br />

Q9<br />

Q7<br />

C2<br />

Q13<br />

D2<br />

R2<br />

Q12<br />

Q1<br />

R19<br />

Q11<br />

R6<br />

D3<br />

R18<br />

R17<br />

R10<br />

Q4<br />

<strong>TL431</strong><br />

D1<br />

R1<br />

R11-R16<br />

Q6<br />

Q5<br />

Anode<br />

- All component values are nominal<br />

RECOMMENDED OPERATING CONDITIONS<br />

CHARACTERISTIC<br />

Cathode Voltage<br />

Cathode Current<br />

SYMBOL<br />

V KA<br />

I K<br />

MIN.<br />

V REF<br />

1<br />

MAX.<br />

36<br />

100<br />

UNIT<br />

V<br />

mA<br />

DISSIPATION RATING TABLE1-FREE-AIR TEMPERATURE<br />

Package<br />

TO-92<br />

SOT-89<br />

T A =25℃<br />

Power Rating<br />

770mW<br />

500mW<br />

Derating Factor<br />

Above T A =25℃<br />

6.2mW/℃<br />

4.0mW/℃<br />

T A =70℃<br />

Power Rating<br />

491mW<br />

320mW<br />

SOT-23 230mW 1.8mW/℃ 149mW<br />

T A =85℃ T A =125℃<br />

Power Rating Power Rating<br />

398mW<br />

-<br />

260mW<br />

-<br />

122mW -<br />

Oct. 2003 - Rev 03<br />

2<br />

HTC


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

ABSOLUTE MAXIMUM RATINGS<br />

(Full Operating Ambient Temperature Range Applies Unless Otherwise Noted)<br />

CHARACTERISTIC<br />

Cathode Voltage<br />

Continuous Cathode Current Range<br />

Reference Input Current Range<br />

Junction Temperature<br />

Operating Temperature<br />

Storage Temperature<br />

Total Power Dissipation<br />

SYMBOL<br />

V KA<br />

I KA<br />

I REF<br />

RATING<br />

37<br />

UNIT<br />

V<br />

-100~+150<br />

mA<br />

0.05~10 mA<br />

T J 150 ℃<br />

T OPR<br />

T STG -65 ~ 150<br />

P D<br />

-20 ~ 85<br />

℃<br />

700<br />

℃<br />

mW<br />

<strong>TL431</strong> ELECTRICAL CHARACTERISTICS (T A =25℃, unless otherwise specified)<br />

CHARACTERISTIC<br />

SYMBOL<br />

CIR-CUIT<br />

TEST CONDITION<br />

MIN.<br />

TYP.<br />

MAX.<br />

UNIT<br />

V REF<br />

Reference Input Voltage 1 V KA =V REF , I K =10mA<br />

Deviation of Reference V KA =V REF , I K =10mA<br />

2.440<br />

2.495 2.550 V<br />

Input Voltage Over ΔV REF /ΔT 1 T A =Full Range<br />

Full Temperature Range<br />

Ratio of Change in<br />

ΔV KA =10V-V REF<br />

Reference Input Voltage<br />

ΔV REF /ΔV KA 2 I K =10mA<br />

to the Change in Cathod<br />

ΔV KA =36V-10V<br />

Voltage<br />

Reference Input Current I REF 2 I KA =10mA, R1=10kΩ, R2=∞<br />

Deviation of Reference I K =10mA, R1=10kΩ, R2=∞<br />

Input Current Over Full ΔI REF /ΔT 2 T A =Full Range<br />

Temperature Range<br />

3 17<br />

-1.4 -2.7<br />

-1 -2<br />

1.8 4<br />

0.4 1.2<br />

mV<br />

mV/V<br />

μA<br />

μA<br />

Minimum Cathode ΔV KA =V REF<br />

I KA MIN 1<br />

Current for Regulation<br />

Off-State Cathode V KA =36V, V REF =0<br />

I KA OFF 3<br />

Current<br />

Dynamic Impedance V KA =V REF, I K =1mA~100mA,<br />

Z KA 1<br />

f≤1kHz<br />

0.5 1 mA<br />

0.2 1 μA<br />

0.2 0.5 Ω<br />

Oct. 2003 - Rev 03<br />

3<br />

HTC


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

<strong>TL431</strong>A ELECTRICAL CHARACTERISTICS (T A =25℃, unless otherwise specified)<br />

CHARACTERISTIC SYMBOL CIR-CUIT TEST CONDITION MIN. TYP. MAX. UNIT<br />

Reference Input Voltage V REF 1 V KA =V REF , I K =10mA<br />

2.470 2.495 2.520 V<br />

Deviation of Reference V KA =V REF , I K =10mA<br />

Input Voltage Over ΔV REF /ΔT 1 T A =Full Range<br />

3 17 mV<br />

Full Temperature Range<br />

Ratio of Change in<br />

ΔV KA =10V-V REF<br />

-1.4 -2.7<br />

Reference Input Voltage<br />

ΔV REF /ΔV KA 2 I K =10mA<br />

to the Change in Cathod<br />

ΔV KA =36V-10V<br />

-1 -2<br />

Voltage<br />

mV/V<br />

Reference Input Current I REF 2 I KA =10mA, R1=10kΩ, R2=∞<br />

1.8 4 μA<br />

Deviation of Reference I K =10mA, R1=10kΩ, R2=∞<br />

Input Current Over Full ΔI REF /ΔT 2 T A =Full Range<br />

0.4 1.2 μA<br />

Temperature Range<br />

Minimum Cathode ΔV KA =V<br />

I REF<br />

KA MIN 1<br />

Current for Regulation<br />

0.5 1<br />

Off-State Cathode V KA =36V, V REF =0<br />

I KA OFF 3<br />

Current<br />

0.2 1<br />

Dynamic Impedance V KA =V REF, I K =1mA~100mA,<br />

Z KA 1<br />

f≤1kHz<br />

0.2 0.5<br />

mA<br />

μA<br />

Ω<br />

<strong>TL431</strong>C ELECTRICAL CHARACTERISTICS (T A =25℃, unless otherwise specified)<br />

CHARACTERISTIC SYMBOL CIR-CUIT TEST CONDITION MIN. TYP. MAX. UNIT<br />

Reference Input Voltage V REF 1 V KA =V REF , I K =10mA<br />

2.482 2.495 2.508 V<br />

Deviation of Reference V KA =V REF , I K =10mA<br />

Input Voltage Over ΔV REF /ΔT 1 T A =Full Range<br />

3 17 mV<br />

Full Temperature Range<br />

Ratio of Change in<br />

ΔV KA =10V-V REF<br />

-1.4 -2.7<br />

Reference Input Voltage<br />

ΔV REF /ΔV KA 2 I K =10mA<br />

to the Change in Cathod<br />

ΔV KA =36V-10V<br />

-1 -2<br />

Voltage<br />

mV/V<br />

Reference Input Current I REF 2 I KA =10mA, R1=10kΩ, R2=∞<br />

1.8 4 μA<br />

Deviation of Reference I K =10mA, R1=10kΩ, R2=∞<br />

Input Current Over Full ΔI REF /ΔT 2 T A =Full Range<br />

0.4 1.2 μA<br />

Temperature Range<br />

Minimum Cathode ΔV KA =V REF<br />

I KA MIN 1<br />

Current for Regulation<br />

Off-State Cathode V KA =36V, V REF =0<br />

I KA OFF 3<br />

Current<br />

Dynamic Impedance V KA =V REF, I K =1mA~100mA,<br />

Z KA 1<br />

f≤1kHz<br />

0.5<br />

0.2<br />

0.2<br />

1<br />

1<br />

0.5<br />

mA<br />

μA<br />

Ω<br />

Oct. 2003 - Rev 03<br />

4<br />

HTC


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

Fig. 1 Test Circuit for V KA =V REF<br />

Fig. 2 Test Circuit for V KA ≥V REF<br />

INPUT<br />

V KA<br />

INPUT<br />

INPUT V KA<br />

V KA<br />

I KA<br />

I KA<br />

R1<br />

I<br />

DUT<br />

REF<br />

DUT<br />

V REF<br />

R2 V REF<br />

Fig. 3 Test Circuit for I KA (off)<br />

I KA<br />

V KA =V REF (1+R1/R2)+I REF R1<br />

DUT<br />

Oct. 2003 - Rev 03<br />

5<br />

HTC


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

The deviation parameters V REF(DEV) and I REF(DEF) are defined as the differences between the maximum and minimum<br />

values obtained over the recommended temperature range. The average full-range temperature coefficient of the<br />

reference voltage, αV REF , is defined as :<br />

Maximum V REF<br />

|αV REF |<br />

( ΔV<br />

V I(dev)<br />

( x10 6<br />

ppm V REF at 25℃ )<br />

℃ ) =<br />

ΔT A<br />

Minimum V REF<br />

V I(dev)<br />

ΔT A<br />

Where :<br />

ΔT A is the recommended operating free-air temperature range of the device.<br />

αV REF can be positive or negative, depending on whether minimum V REF or maximum V REF , respectively, occurs at the<br />

lower temperature.<br />

Example : Maximum V REF =2496mV at 30℃, maximum V REF =2492mV at 0℃, V REF =2495mV at 25℃, ΔT A =70℃<br />

for <strong>TL431</strong>C<br />

|αV REF |=<br />

4mV<br />

( )<br />

2495mV x106 ~<br />

23PPM/℃<br />

70℃<br />

Because minimum V REF occurs at the lower temperature, the coefficient is positive.<br />

Calculating Dynamic Impedance<br />

|Z<br />

The dynamic impedance is defined as : KA |=<br />

ΔV KA<br />

ΔI KA<br />

When the device is operating with two external resistors (see Figure 3), the total dynamic impedance of the circuit<br />

is given by :<br />

|Z'|=<br />

ΔI<br />

~<br />

~|Z KA |<br />

R1<br />

(1+<br />

R2<br />

)<br />

Figure 1. Calculating deviation parameters and dynamic impedance<br />

Oct. 2003 - Rev 03<br />

6<br />

HTC


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

TYPICAL PERFORMANCE CHARACTERISTICS<br />

REFERENCE VOLTAGE vs<br />

FREE-AIR TEMPERATURE†<br />

REFERENCE CURRENT vs<br />

FREE-AIR TEMPERATURE †<br />

2600<br />

2580<br />

2560<br />

V REF =2500mV‡<br />

5<br />

4<br />

R1=10kΩ<br />

R2=∞<br />

I KA =10mA<br />

VREF-REFERENCE VOLTAGE-<br />

2540<br />

2520<br />

2500<br />

2480<br />

2460<br />

2440<br />

V REF =2495mV‡<br />

V REF =2440mV‡<br />

VREF-REFERENCE VOLTAGE-<br />

3<br />

2<br />

1<br />

2420<br />

2400<br />

0<br />

-75 -50 -25 0 25 50 75 100 125<br />

T A -FREE-AIR TEMPERATURE-℃<br />

-75 -50 -25 0 25 50 75 100 125<br />

T A -FREE-AIR TEMPERATURE-℃<br />

† Data is applicable only within the recommended operating free-air † Data is applicable only within the recommended operating free-air<br />

temperature ranges of the various devices. temperature ranges of the various devices.<br />

‡ Data is for devices having the indicated value of REF V at I KA =10mV,<br />

T A =25℃<br />

Figure 4. Figure 5.<br />

CATHODE CURRENT vs<br />

CATHODE VOLTAGE<br />

CATHODE CURRENT vs<br />

CATHODE VOLTAGE<br />

150<br />

800<br />

125<br />

V KA =V REF<br />

T A =25℃<br />

V KA =V ERF<br />

T A =25℃<br />

100<br />

600<br />

IKA-CATHODE CURRENT-<br />

75<br />

50<br />

25<br />

0<br />

IKA-CATHODE CURRENT-<br />

400<br />

200<br />

I MIN<br />

-25<br />

-50<br />

0<br />

-75<br />

-100<br />

-200<br />

-2 -1 0 1 2 3<br />

V KA -CATHODE VOLTAGE-V<br />

-1 0 1 2 3<br />

V KA -CATHODE VOLTAGE-V<br />

Figure 6. Figure 7.<br />

Oct. 2003 - Rev 03<br />

7<br />

HTC


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

TYPICAL PERFORMANCE CHARACTERISTICS<br />

2.5<br />

V KA =36<br />

V<br />

OFF-STATE CATHODE CURRENT<br />

vs FREE-AIR TEMPERATURE†<br />

-0.85<br />

V KA =3V TO 36V<br />

RATIO DELTA REFERENCE VOLTAGE TO<br />

DELTA CATHODE VOLTAGE vs<br />

FREE-AIR TEMPERATURE †<br />

2<br />

-0.95<br />

IOFF-OFFSTATE CATHODE CURRENT<br />

1.5<br />

1<br />

0.5<br />

ΔVREF/ΔVKA-mV/V<br />

-1.05<br />

-1.15<br />

-1.25<br />

-1.35<br />

0<br />

-1.45<br />

-75 -50 -25 0 25 50 75 100 125<br />

T A -FREE-AIR TEMPERATURE-℃<br />

-75 -50 -25 0 25 50 75 100 125<br />

T A -FREE-AIR TEMPERATURE-℃<br />

† Data is applicable only within the recommended operating free-air † Data is applicable only within the recommended operating free-air<br />

temperature ranges of the various devices. temperature ranges of the various devices.<br />

Figure 8. Figure 9.<br />

EQUIVALENT INPUT NOISE VOLTAGE<br />

VS FREQUENCY<br />

260<br />

240<br />

I O =10mA<br />

T A =25℃<br />

VIN-EQUIVALENT NOISE VOLTAGE-nV<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

10 100 1K 10K 100K<br />

f-FREQUENCY-Hz<br />

Figure 10.<br />

Oct. 2003 - Rev 03<br />

8<br />

HTC


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

TYPICAL PERFORMANCE CHARACTERISTICS<br />

19.1V<br />

1kΩ<br />

500μF<br />

910Ω<br />

<strong>TL431</strong><br />

(DUT)<br />

820Ω<br />

16Ω<br />

0.1μF<br />

2000μF<br />

160kΩ<br />

+<br />

-<br />

910Ω<br />

V CC<br />

TL2027<br />

A V =10V/mV<br />

16kΩ 16kΩ<br />

1μF<br />

V CC<br />

TO OSCILLOSCOPE<br />

1μF<br />

TL2027 22μF<br />

+<br />

-<br />

33kΩ<br />

33kΩ A V =2V/V<br />

V EE<br />

Figure 11. Test Circuit for Equivalent Input Noise Voltage<br />

SMALL-SIGNAL VOLTAGE AMPLIFICATION<br />

VS FREQUENCY<br />

60<br />

AV-SMALL-SIGNAL VOLTAGE AMPLIFICATIO<br />

50<br />

40<br />

30<br />

20<br />

I KA =10mA<br />

T A =25℃<br />

~<br />

9μF<br />

15kΩ<br />

8.25kΩ<br />

I KA<br />

+<br />

-<br />

OUTPUT<br />

232Ω<br />

GND<br />

10<br />

Test Circuit for Voltage Amplification<br />

0<br />

1K 10K 100K 1M 10M<br />

f-FREQUENCY-Hz<br />

Figure 12.<br />

Oct. 2003 - Rev 03<br />

9<br />

HTC


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

TYPICAL PERFORMANCE CHARACTERISTICS<br />

REFERENCE IMPEDANCE<br />

VS FREQUENCY<br />

|ZKA|-REFERENCE IMPEDANCE<br />

100<br />

10<br />

1<br />

I KA =10mA<br />

T A =25℃<br />

~<br />

1kΩ<br />

50Ω<br />

-<br />

+<br />

I KA<br />

OUTPUT<br />

GND<br />

Test Circuit for Reference Impedance<br />

0.1<br />

1K 10K 100K 1M 10M<br />

f-FREQUENCY-Hz<br />

Figure 13.<br />

REFERENCE IMPEDANCE<br />

VS FREQUENCY<br />

6<br />

T A =25℃<br />

INPUT<br />

5<br />

220Ω<br />

OUTPUT<br />

|ZKA|-REFERENCE IMPEDANCE<br />

4<br />

3<br />

2<br />

1<br />

OUTPUT<br />

PULSE<br />

GENERATOR<br />

f=100kHz<br />

50Ω<br />

GND<br />

Test Circuit for Pulse Response<br />

0<br />

-1 0 1 2 3 4 5 6 7<br />

t-TIME-μs<br />

Figure 14.<br />

Oct. 2003 - Rev 03<br />

10<br />

HTC


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

APPLICATION INFORMATION<br />

V I (BATT)<br />

R<br />

(SEE NOTE A)<br />

V O<br />

V REF<br />

R1<br />

0.1%<br />

R2<br />

0.1%<br />

<strong>TL431</strong><br />

R1<br />

V O =(1+ )<br />

R2<br />

V REF<br />

RETURN<br />

NOTE A : R Should provide cathode current≥1mA to the <strong>TL431</strong> at minimum V I (BATT)<br />

Figure 15. Shunt Regulator<br />

V I (BATT)<br />

INPUT<br />

V IT<br />

~ 2.5V<br />

<strong>TL431</strong><br />

V O<br />

V ON ~ 2.5V<br />

V OFF ~ V I (BATT)<br />

GND<br />

Figure 16. Single-Supply Comparator With Temperature-Compensated Threshold<br />

V I (BATT)<br />

<strong>TL431</strong><br />

R<br />

(SEE NOTE A)<br />

30Ω<br />

R2<br />

0.1%<br />

0.01μF<br />

R1<br />

0.1%<br />

2N222<br />

4.7kΩ<br />

2N222<br />

R1<br />

V O =(1+ )<br />

R2<br />

V O<br />

V REF<br />

NOTE A : R Should provide cathode current≥1mA to the <strong>TL431</strong> at minimum V I (BATT)<br />

Figure 17. Precision High-Current Series Regulator<br />

Oct. 2003 - Rev 03<br />

11<br />

HTC


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

APPLICATION INFORMATION<br />

V I (BATT)<br />

IN<br />

LM7805<br />

OUT<br />

V O<br />

COMMON<br />

<strong>TL431</strong><br />

R1<br />

R1<br />

V O =(1+<br />

R2<br />

)<br />

V REF<br />

MINIMUM V O =V REF +5V<br />

R2<br />

Figure 18. Output Control of a 3-Terminal Fixed Regulator<br />

V I (BATT)<br />

V O<br />

R1<br />

R1<br />

V O = (1+<br />

R2 )<br />

V REF<br />

RETURN<br />

R2<br />

<strong>TL431</strong><br />

Figure 19. High-Current Shunt Regulator<br />

V I (BATT)<br />

V O<br />

R1<br />

<strong>TL431</strong><br />

R2<br />

C<br />

(SEE NOTE A)<br />

NOTE A : Refer to the stability boundary conditions in Figure 16 to determine allowable values for C.<br />

Figure 20. Crowbar Circuit<br />

Oct. 2003 - Rev 03<br />

12<br />

HTC


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

APPLICATION INFORMATION<br />

V I (BATT)<br />

IN<br />

8.2kΩ<br />

LM317<br />

Adjust<br />

OUT<br />

243Ω<br />

0.1%<br />

V O<br />

~ 5V, 1.5A<br />

<strong>TL431</strong><br />

243Ω<br />

0.1%<br />

Figure 21. Precision 5-V 1.5A Regulator<br />

V I (BATT)<br />

R B<br />

(SEE NOTE A)<br />

27.4MΩ<br />

0.1%<br />

V O<br />

~ 5V<br />

<strong>TL431</strong><br />

27.4MΩ<br />

0.1%<br />

NOTE A : R B Should provide cathode current≥1mA to the <strong>TL431</strong>.<br />

Figure 22. Efficient 5-V Precision Regulator<br />

12V<br />

6.8MΩ<br />

5V<br />

10MΩ<br />

-<br />

<strong>TL431</strong><br />

10MΩ<br />

0.1%<br />

10MΩ<br />

0.1%<br />

X<br />

NOT<br />

USED<br />

+<br />

TL598<br />

FEED BACK<br />

Figure 23. PWM Converter With Reference<br />

Oct. 2003 - Rev 03<br />

13<br />

HTC


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

APPLICATION INFORMATION<br />

V I (BATT)<br />

R1A<br />

<strong>TL431</strong><br />

R3<br />

(SEE NOTE A)<br />

R1B<br />

OUT<br />

R4<br />

(SEE NOTE A)<br />

LOW LIMIT=<br />

R1B<br />

(1+ )<br />

R2B<br />

V REF<br />

HIGH LIMIT= (1+<br />

R1A<br />

)<br />

R2A<br />

V REF<br />

R2A<br />

R2B<br />

LED ON WHEN LOW LIMIT


<strong>PROGRAMMABLE</strong> <strong>PRECISION</strong> <strong>SHUNT</strong> <strong>REGULATOR</strong> <strong>TL431</strong>/A /C<br />

APPLICATION INFORMATION<br />

V I (BATT)<br />

I O<br />

I O =<br />

V REF<br />

R S<br />

<strong>TL431</strong><br />

R S<br />

0.1%<br />

Figure 27. Precision Constant-Current Sink<br />

Oct. 2003 - Rev 03<br />

15<br />

HTC

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!