23.07.2014 Views

ICL7106, ICL7107, ICL7107S - ESR Electronic Components

ICL7106, ICL7107, ICL7107S - ESR Electronic Components

ICL7106, ICL7107, ICL7107S - ESR Electronic Components

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

®<br />

<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

Data Sheet October 25, 2004<br />

FN3082.5<br />

3 1 / 2 Digit, LCD/LED Display, A/D<br />

Converters<br />

The Intersil <strong>ICL7106</strong> and <strong>ICL7107</strong> are high performance, low<br />

power, 3 1 / 2 digit A/D converters. Included are seven<br />

segment decoders, display drivers, a reference, and a clock.<br />

The <strong>ICL7106</strong> is designed to interface with a liquid crystal<br />

display (LCD) and includes a multiplexed backplane drive;<br />

the <strong>ICL7107</strong> will directly drive an instrument size light<br />

emitting diode (LED) display.<br />

The <strong>ICL7106</strong> and <strong>ICL7107</strong> bring together a combination of<br />

high accuracy, versatility, and true economy. It features autozero<br />

to less than 10µV, zero drift of less than 1µV/ o C, input<br />

bias current of 10pA (Max), and rollover error of less than<br />

one count. True differential inputs and reference are useful in<br />

all systems, but give the designer an uncommon advantage<br />

when measuring load cells, strain gauges and other bridge<br />

type transducers. Finally, the true economy of single power<br />

supply operation (<strong>ICL7106</strong>), enables a high performance<br />

panel meter to be built with the addition of only 10 passive<br />

components and a display.<br />

Features<br />

• Guaranteed Zero Reading for 0V Input on All Scales<br />

• True Polarity at Zero for Precise Null Detection<br />

• 1pA Typical Input Current<br />

• True Differential Input and Reference, Direct Display Drive<br />

- LCD <strong>ICL7106</strong>, LED lCL7107<br />

• Low Noise - Less Than 15µV P-P<br />

• On Chip Clock and Reference<br />

• Low Power Dissipation - Typically Less Than 10mW<br />

• No Additional Active Circuits Required<br />

• Enhanced Display Stability<br />

• Pb-Free Available (RoHS Compliant)<br />

Ordering Information<br />

TEMP.<br />

PKG.<br />

PART NO. RANGE (°C) PACKAGE DWG. #<br />

<strong>ICL7106</strong>CPL 0 to 70 40 Ld PDIP E40.6<br />

<strong>ICL7106</strong>CPLZ<br />

(Note 2)<br />

0 to 70 40 Ld PDIP<br />

(Pb-free) (Note 3)<br />

E40.6<br />

<strong>ICL7106</strong>CM44 0 to 70 44 Ld MQFP Q44.10x10<br />

<strong>ICL7107</strong>CPL 0 to 70 40 Ld PDIP E40.6<br />

<strong>ICL7107</strong>CPLZ<br />

(Note 2)<br />

0 to 70 40 Ld PDIP<br />

(Pb-free) (Note 3)<br />

E40.6<br />

<strong>ICL7107</strong>RCPL 0 to 70 40 Ld PDIP (Note 1) E40.6<br />

<strong>ICL7107</strong>RCPLZ<br />

(Note 2)<br />

0 to 70 40 Ld PDIP<br />

(Pb-free)(Notes 1, 3)<br />

<strong>ICL7107</strong>SCPL 0 to 70 40 Ld PDIP<br />

(Notes 1, 3)<br />

<strong>ICL7107</strong>SCPLZ<br />

(Note 2)<br />

E40.6<br />

E40.6<br />

0 to 70 40 Ld PDIP E40.6<br />

(Pb-free) (Notes 1, 3)<br />

<strong>ICL7107</strong>CM44 0 to 70 44 Ld MQFP Q44.10x10<br />

<strong>ICL7107</strong>CM44T 0 to 70 44 Ld MQFP (Tape Q44.10x10<br />

and Reel)<br />

NOTES:<br />

1. “R” indicates device with reversed leads for mounting to PC board underside. “S”<br />

indicates enhanced stability.<br />

2. Intersil Pb-free products employ special Pb-free material sets; molding<br />

compounds/die attach materials and 100% matte tin plate termination finish,<br />

which are RoHS compliant and compatible with both SnPb and Pb-free<br />

soldering operations. Intersil Pb-free products are MSL classified at Pb-free<br />

peak reflow temperatures that meet or exceed the Pb-free requirements of<br />

IPC/JEDEC J STD-020C.<br />

3. Pb-free PDIPs can be used for through hole wave solder processing only. They<br />

are not intended for use in Reflow solder processing applications.<br />

1<br />

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.<br />

1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.<br />

Copyright Intersil Americas Inc. 2002, 2004. All Rights Reserved<br />

All other trademarks mentioned are the property of their respective owners.


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

Pinouts<br />

<strong>ICL7106</strong>, <strong>ICL7107</strong> (PDIP)<br />

TOP VIEW<br />

<strong>ICL7107</strong>R (PDIP)<br />

TOP VIEW<br />

V+<br />

D1<br />

C1<br />

B1<br />

(1’s) A1<br />

F1<br />

G1<br />

E1<br />

D2<br />

C2<br />

B2<br />

(10’s)<br />

A2<br />

F2<br />

E2<br />

D3<br />

B3<br />

(100’s)<br />

F3<br />

E3<br />

(1000) AB4<br />

POL<br />

(MINUS)<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

26<br />

25<br />

24<br />

23<br />

22<br />

21<br />

OSC 1<br />

OSC 2<br />

OSC 3<br />

TEST<br />

REF HI<br />

REF LO<br />

C REF +<br />

C REF -<br />

COMMON<br />

IN HI<br />

IN LO<br />

A-Z<br />

BUFF<br />

INT<br />

V-<br />

G2 (10’s)<br />

C3<br />

A3 (100’s)<br />

G3<br />

BP/GND<br />

OSC 1<br />

OSC 2<br />

OSC 3<br />

TEST<br />

REF HI<br />

REF LO<br />

C REF +<br />

C REF -<br />

COMMON<br />

IN HI<br />

IN LO<br />

A-Z<br />

BUFF<br />

INT<br />

V-<br />

G2 (10’s)<br />

C3<br />

(100’s) A3<br />

G3<br />

BP/GND<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

26<br />

25<br />

24<br />

23<br />

22<br />

21<br />

V+<br />

D1<br />

C1<br />

B1<br />

A1 (1’s)<br />

F1<br />

G1<br />

E1<br />

D2<br />

C2<br />

B2<br />

(10’s)<br />

A2<br />

F2<br />

E2<br />

D3<br />

B3<br />

(100’s)<br />

F3<br />

E3<br />

(1000) AB4<br />

POL<br />

(MINUS)<br />

<strong>ICL7106</strong>, <strong>ICL7107</strong> (MQFP)<br />

TOP VIEW<br />

REF HI<br />

REF LO<br />

C REF +<br />

C REF -<br />

COMMON<br />

IN HI<br />

IN LO<br />

A-Z<br />

BUFF<br />

INT<br />

V-<br />

NC<br />

44 43 42 41 40<br />

1<br />

39 38 37 36 35 34<br />

33<br />

NC<br />

TEST<br />

OSC 3<br />

NC<br />

OSC 2<br />

OSC 1<br />

V+<br />

D1<br />

C1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

26<br />

25<br />

24<br />

B1 11<br />

12 13 14 15 16 17 18 19<br />

23<br />

20 21 22<br />

NC<br />

G2<br />

C3<br />

A3<br />

G3<br />

BP/GND<br />

POL<br />

AB4<br />

E3<br />

F3<br />

B3<br />

A1 F1 G1 E1 D2 C2 B2 A2 F2 E2 D3<br />

2 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

Absolute Maximum Ratings<br />

Supply Voltage<br />

<strong>ICL7106</strong>, V+ to V-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15V<br />

<strong>ICL7107</strong>, V+ to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V<br />

<strong>ICL7107</strong>, V- to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -9V<br />

Analog Input Voltage (Either Input) (Note 1) . . . . . . . . . . . . V+ to V-<br />

Reference Input Voltage (Either Input). . . . . . . . . . . . . . . . . V+ to V-<br />

Clock Input<br />

<strong>ICL7106</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEST to V+<br />

<strong>ICL7107</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND to V+<br />

Operating Conditions<br />

Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 o C to 70 o C<br />

Thermal Information<br />

Thermal Resistance (Typical, Note 2)<br />

θ JA ( o C/W)<br />

PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50<br />

MQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .150 o C<br />

Maximum Storage Temperature Range. . . . . . . . . . -65 o C to 150 o C<br />

Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 o C<br />

(MQFP - Lead Tips Only)<br />

NOTE: Pb-free PDIPs can be used for through hole wave solder<br />

processing only. They are not intended for use in Reflow solder<br />

processing applications.<br />

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the<br />

device at these or any other conditions above those indicated in the operational sections of this specification is not implied.<br />

NOTES:<br />

1. Input voltages may exceed the supply voltages provided the input current is limited to ±100µA.<br />

2. θ JA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.<br />

Electrical Specifications (Note 3)<br />

SYSTEM PERFORMANCE<br />

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT<br />

Zero Input Reading V IN = 0.0V, Full Scale = 200mV -000.0 ±000.0 +000.0 Digital<br />

Reading<br />

Stability (Last Digit) (<strong>ICL7106</strong>S, <strong>ICL7107</strong>S<br />

Only)<br />

Fixed Input Voltage (Note 6) -000.0 ±000.0 +000.0 Digital<br />

Reading<br />

Ratiometric Reading V lN = V REF , V REF = 100mV 999 999/10<br />

00<br />

1000 Digital<br />

Reading<br />

Rollover Error<br />

Linearity<br />

-V IN = +V lN ≅ 200mV<br />

Difference in Reading for Equal Positive and Negative<br />

Inputs Near Full Scale<br />

Full Scale = 200mV or Full Scale = 2V Maximum<br />

Deviation from Best Straight Line Fit (Note 5)<br />

- ±0.2 ±1 Counts<br />

- ±0.2 ±1 Counts<br />

Common Mode Rejection Ratio V CM = 1V, V IN = 0V, Full Scale = 200mV (Note 5) - 50 - µV/V<br />

Noise<br />

V IN = 0V, Full Scale = 200mV<br />

(Peak-To-Peak Value Not Exceeded 95% of Time)<br />

- 15 - µV<br />

Leakage Current Input V lN = 0 (Note 5) - 1 10 pA<br />

Zero Reading Drift V lN = 0, 0 o C To 70 o C (Note 5) - 0.2 1 µV/ o C<br />

Scale Factor Temperature Coefficient V IN = 199mV, 0 o C To 70 o C,<br />

(Ext. Ref. 0ppm/× o C) (Note 5)<br />

- 1 5 ppm/ o C<br />

End Power Supply Character V+ Supply<br />

Current<br />

V IN = 0 (Does Not Include LED Current for <strong>ICL7107</strong>) - 1.0 1.8 mA<br />

End Power Supply Character V- Supply Current <strong>ICL7107</strong> Only - 0.6 1.8 mA<br />

COMMON Pin Analog Common Voltage<br />

Temperature Coefficient of Analog Common<br />

DISPLAY DRIVER <strong>ICL7106</strong> ONLY<br />

25kΩ Between Common and<br />

Positive Supply (With Respect to + Supply)<br />

25kΩ Between Common and<br />

Positive Supply (With Respect to + Supply)<br />

2.4 3.0 3.2 V<br />

- 80 - ppm/ o C<br />

Peak-To-Peak Segment Drive Voltage<br />

Peak-To-Peak Backplane Drive Voltage<br />

V+ = to V- = 9V (Note 4) 4 5.5 6 V<br />

3 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

Electrical Specifications<br />

(Note 3) (Continued)<br />

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT<br />

DISPLAY DRIVER <strong>ICL7107</strong> ONLY<br />

Segment Sinking Current<br />

V+ = 5V, Segment Voltage = 3V<br />

Except Pins 19 and 20 5 8 - mA<br />

Pin 19 Only 10 16 - mA<br />

Pin 20 Only 4 7 - mA<br />

NOTES:<br />

3. Unless otherwise noted, specifications apply to both the <strong>ICL7106</strong> and <strong>ICL7107</strong> at T A = 25 o C, f CLOCK = 48kHz. <strong>ICL7106</strong> is tested in the circuit<br />

of Figure 1. <strong>ICL7107</strong> is tested in the circuit of Figure 2.<br />

4. Back plane drive is in phase with segment drive for “off” segment, 180 degrees out of phase for “on” segment. Frequency is 20 times conversion<br />

rate. Average DC component is less than 50mV.<br />

5. Not tested, guaranteed by design.<br />

6. Sample Tested.<br />

Typical Applications and Test Circuits<br />

R R 1<br />

5<br />

C<br />

R C 5<br />

4 1 C 2 C 3<br />

R 3 C 4<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

+ -<br />

IN<br />

R 2<br />

9V<br />

28<br />

10<br />

11<br />

12<br />

13<br />

27<br />

26<br />

25<br />

OSC 1<br />

OSC 2<br />

OSC 3<br />

TEST<br />

REF HI<br />

REF LO<br />

C REF +<br />

C REF -<br />

COM<br />

IN HI<br />

IN LO<br />

A-Z<br />

BUFF<br />

INT<br />

V-<br />

G2<br />

<strong>ICL7106</strong><br />

V+<br />

D1<br />

C1<br />

B1<br />

A1<br />

F1<br />

G1<br />

E1<br />

D2<br />

C2<br />

B2<br />

A2<br />

F2<br />

E2<br />

D3<br />

B3<br />

+<br />

-<br />

14<br />

15<br />

16<br />

DISPLAY<br />

24<br />

23<br />

22<br />

C3<br />

A3<br />

G3<br />

F3<br />

E3<br />

AB4<br />

17<br />

18<br />

19<br />

20 POL<br />

BP 21<br />

C 1 = 0.1µF<br />

C 2 = 0.47µF<br />

C 3 = 0.22µF<br />

C 4 = 100pF<br />

C 5 = 0.02µF<br />

R 1 = 24kΩ<br />

R 2 = 47kΩ<br />

R 3 = 100kΩ<br />

R 4 = 1kΩ<br />

R 5 = 1MΩ<br />

DISPLAY<br />

FIGURE 1. <strong>ICL7106</strong> TEST CIRCUIT AND TYPICAL APPLICATION WITH LCD DISPLAY COMPONENTS SELECTED FOR 200mV FULL<br />

SCALE<br />

+5V + -<br />

-5V<br />

IN<br />

R R 1<br />

5<br />

C<br />

R C 5<br />

1 C R 4 2 2 C 3<br />

R 3 C 4<br />

DISPLAY<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

26<br />

25<br />

24<br />

23<br />

22<br />

OSC 1<br />

OSC 2<br />

OSC 3<br />

TEST<br />

REF HI<br />

REF LO<br />

C REF +<br />

C REF -<br />

COM<br />

IN HI<br />

IN LO<br />

A-Z<br />

BUFF<br />

INT<br />

V-<br />

G2<br />

C3<br />

A3<br />

G3<br />

<strong>ICL7107</strong><br />

V+<br />

D1<br />

C1<br />

B1<br />

A1<br />

F1<br />

G1<br />

E1<br />

D2<br />

C2<br />

B2<br />

A2<br />

F2<br />

E2<br />

D3<br />

B3<br />

F3<br />

E3<br />

AB4<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20 POL GND 21<br />

C 1 = 0.1µF<br />

C 2 = 0.47µF<br />

C 3 = 0.22µF<br />

C 4 = 100pF<br />

C 5 = 0.02µF<br />

R 1 = 24kΩ<br />

R 2 = 47kΩ<br />

R 3 = 100kΩ<br />

R 4 = 1kΩ<br />

R 5 = 1MΩ<br />

DISPLAY<br />

FIGURE 2. <strong>ICL7107</strong> TEST CIRCUIT AND TYPICAL APPLICATION WITH LED DISPLAY COMPONENTS SELECTED FOR 200mV FULL<br />

SCALE<br />

4 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

Design Information Summary Sheet<br />

• OSCILLATOR FREQUENCY<br />

f OSC = 0.45/RC<br />

C OSC > 50pF; R OSC > 50kΩ<br />

f OSC (Typ) = 48kHz<br />

• OSCILLATOR PERIOD<br />

t OSC = RC/0.45<br />

• INTEGRATION CLOCK FREQUENCY<br />

f CLOCK = f OSC /4<br />

• INTEGRATION PERIOD<br />

t INT = 1000 x (4/f OSC )<br />

• 60/50Hz REJECTION CRITERION<br />

t INT /t 60Hz or t lNT /t 60Hz = Integer<br />

• OPTIMUM INTEGRATION CURRENT<br />

I INT = 4µA<br />

• FULL SCALE ANALOG INPUT VOLTAGE<br />

V lNFS (Typ) = 200mV or 2V<br />

• INTEGRATE RESISTOR<br />

V<br />

R INFS<br />

INT<br />

= ----------------<br />

I INT<br />

• INTEGRATE CAPACITOR<br />

( t INT<br />

)( I INT<br />

)<br />

= -------------------------------<br />

C INT<br />

• INTEGRATOR OUTPUT VOLTAGE SWING<br />

( t INT )( I INT )<br />

= -------------------------------<br />

V INT<br />

V INT<br />

C INT<br />

• V INT MAXIMUM SWING:<br />

(V- + 0.5V) < V INT < (V+ - 0.5V), V INT (Typ) = 2V<br />

• DISPLAY COUNT<br />

V IN<br />

COUNT = 1000 × --------------<br />

V REF<br />

• CONVERSION CYCLE<br />

t CYC = t CL0CK x 4000<br />

t CYC = t OSC x 16,000<br />

when f OSC = 48kHz; t CYC = 333ms<br />

• COMMON MODE INPUT VOLTAGE<br />

(V- + 1V) < V lN < (V+ - 0.5V)<br />

• AUTO-ZERO CAPACITOR<br />

0.01µF < C AZ < 1µF<br />

• REFERENCE CAPACITOR<br />

0.1µF < C REF < 1µF<br />

• V COM<br />

Biased between Vi and V-.<br />

• V COM ≅ V+ - 2.8V<br />

Regulation lost when V+ to V- < ≅6.8V<br />

If V COM is externally pulled down to (V+ to V-)/2,<br />

the V COM circuit will turn off.<br />

• <strong>ICL7106</strong> POWER SUPPLY: SINGLE 9V<br />

V+ - V- = 9V<br />

Digital supply is generated internally<br />

V GND ≅ V+ - 4.5V<br />

• <strong>ICL7106</strong> DISPLAY: LCD<br />

Type: Direct drive with digital logic supply amplitude.<br />

• <strong>ICL7107</strong> POWER SUPPLY: DUAL ±5.0V<br />

V+ = +5V to GND<br />

V- = -5V to GND<br />

Digital Logic and LED driver supply V+ to GND<br />

• <strong>ICL7107</strong> DISPLAY: LED<br />

Type: Non-Multiplexed Common Anode<br />

Typical Integrator Amplifier Output Waveform (INT Pin)<br />

AUTO ZERO PHASE<br />

(COUNTS)<br />

2999 - 1000<br />

SIGNAL INTEGRATE<br />

PHASE FIXED<br />

1000 COUNTS<br />

DE-INTEGRATE PHASE<br />

0 - 1999 COUNTS<br />

TOTAL CONVERSION TIME = 4000 x t CLOCK = 16,000 x t OSC<br />

5 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

Detailed Description<br />

Analog Section<br />

Figure 3 shows the Analog Section for the <strong>ICL7106</strong> and<br />

<strong>ICL7107</strong>. Each measurement cycle is divided into three<br />

phases. They are (1) auto-zero (A-Z), (2) signal integrate<br />

(INT) and (3) de-integrate (DE).<br />

Auto-Zero Phase<br />

During auto-zero three things happen. First, input high and low<br />

are disconnected from the pins and internally shorted to analog<br />

COMMON. Second, the reference capacitor is charged to the<br />

reference voltage. Third, a feedback loop is closed around the<br />

system to charge the auto-zero capacitor C AZ to compensate<br />

for offset voltages in the buffer amplifier, integrator, and<br />

comparator. Since the comparator is included in the loop, the A-<br />

Z accuracy is limited only by the noise of the system. In any<br />

case, the offset referred to the input is less than 10µV.<br />

Signal Integrate Phase<br />

During signal integrate, the auto-zero loop is opened, the<br />

internal short is removed, and the internal input high and low<br />

are connected to the external pins. The converter then<br />

integrates the differential voltage between IN HI and IN LO for a<br />

fixed time. This differential voltage can be within a wide<br />

common mode range: up to 1V from either supply. If, on the<br />

other hand, the input signal has no return with respect to the<br />

converter power supply, IN LO can be tied to analog COMMON<br />

to establish the correct common mode voltage. At the end of<br />

this phase, the polarity of the integrated signal is determined.<br />

De-Integrate Phase<br />

The final phase is de-integrate, or reference integrate. Input<br />

low is internally connected to analog COMMON and input<br />

high is connected across the previously charged reference<br />

capacitor. Circuitry within the chip ensures that the capacitor<br />

will be connected with the correct polarity to cause the<br />

integrator output to return to zero. The time required for the<br />

output to return to zero is proportional to the input signal.<br />

Specifically the digital reading displayed is:<br />

V IN<br />

⎛ ⎞<br />

DISPLAY COUNT = 1000⎜--------------<br />

⎟.<br />

⎝ ⎠<br />

V REF<br />

Differential Input<br />

The input can accept differential voltages anywhere within the<br />

common mode range of the input amplifier, or specifically from<br />

0.5V below the positive supply to 1V above the negative<br />

supply. In this range, the system has a CMRR of 86dB typical.<br />

However, care must be exercised to assure the integrator<br />

output does not saturate. A worst case condition would be a<br />

large positive common mode voltage with a near full scale<br />

negative differential input voltage. The negative input signal<br />

drives the integrator positive when most of its swing has been<br />

used up by the positive common mode voltage. For these<br />

critical applications the integrator output swing can be<br />

reduced to less than the recommended 2V full scale swing<br />

with little loss of accuracy. The integrator output can swing to<br />

within 0.3V of either supply without loss of linearity.<br />

Differential Reference<br />

The reference voltage can be generated anywhere within the<br />

power supply voltage of the converter. The main source of<br />

common mode error is a roll-over voltage caused by the<br />

reference capacitor losing or gaining charge to stray capacity<br />

on its nodes. If there is a large common mode voltage, the<br />

reference capacitor can gain charge (increase voltage) when<br />

called up to de-integrate a positive signal but lose charge<br />

(decrease voltage) when called up to de-integrate a negative<br />

input signal. This difference in reference for positive or negative<br />

input voltage will give a roll-over error. However, by selecting the<br />

reference capacitor such that it is large enough in comparison<br />

to the stray capacitance, this error can be held to less than 0.5<br />

count worst case. (See Component Value Selection.)<br />

STRAY<br />

C REF +<br />

REF HI<br />

C REF<br />

REF LO<br />

C REF -<br />

STRAY<br />

R INT<br />

C AZ<br />

C INT<br />

BUFFER V+<br />

A-Z INT<br />

IN HI<br />

31<br />

V+<br />

10µA<br />

34<br />

36<br />

A-Z<br />

A-Z<br />

35<br />

33<br />

-<br />

+<br />

28 1 29 27<br />

INTEGRATOR<br />

2.8V<br />

-<br />

+<br />

-<br />

+<br />

TO<br />

DIGITAL<br />

SECTION<br />

INT<br />

DE-<br />

DE+<br />

INPUT<br />

HIGH<br />

6.2V<br />

A-Z<br />

COMMON<br />

IN LO<br />

32<br />

30<br />

INT<br />

A-Z<br />

DE+<br />

DE-<br />

A-Z AND DE(±)<br />

N<br />

-<br />

+<br />

INPUT<br />

LOW<br />

COMPARATOR<br />

V-<br />

FIGURE 3. ANALOG SECTION OF <strong>ICL7106</strong> AND <strong>ICL7107</strong><br />

6 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

Analog COMMON<br />

This pin is included primarily to set the common mode<br />

voltage for battery operation (<strong>ICL7106</strong>) or for any system<br />

where the input signals are floating with respect to the power<br />

supply. The COMMON pin sets a voltage that is<br />

approximately 2.8V more negative than the positive supply.<br />

This is selected to give a minimum end-of-life battery voltage<br />

of about 6V. However, analog COMMON has some of the<br />

attributes of a reference voltage. When the total supply<br />

voltage is large enough to cause the zener to regulate (>7V),<br />

the COMMON voltage will have a low voltage coefficient<br />

(0.001%/V), low output impedance (≅15Ω), and a<br />

temperature coefficient typically less than 80ppm/× o C.<br />

V+<br />

V<br />

REF HI<br />

REF LO<br />

<strong>ICL7106</strong><br />

<strong>ICL7107</strong><br />

V-<br />

FIGURE 4A.<br />

6.8V<br />

ZENER<br />

I Z<br />

The limitations of the on chip reference should also be<br />

recognized, however. With the <strong>ICL7107</strong>, the internal heating<br />

which results from the LED drivers can cause some<br />

degradation in performance. Due to their higher thermal<br />

resistance, plastic parts are poorer in this respect than<br />

ceramic. The combination of reference Temperature<br />

Coefficient (TC), internal chip dissipation, and package<br />

thermal resistance can increase noise near full scale from<br />

25µV to 80µV P-P . Also the linearity in going from a high<br />

dissipation count such as 1000 (20 segments on) to a low<br />

dissipation count such as 1111(8 segments on) can suffer by<br />

a count or more. Devices with a positive TC reference may<br />

require several counts to pull out of an over-range condition.<br />

This is because over-range is a low dissipation mode, with the<br />

three least significant digits blanked. Similarly, units with a<br />

negative TC may cycle between over-range and a non-overrange<br />

count as the die alternately heats and cools. All these<br />

problems are of course eliminated if an external reference is<br />

used.<br />

The <strong>ICL7106</strong>, with its negligible dissipation, suffers from<br />

none of these problems. In either case, an external reference<br />

can easily be added, as shown in Figure 4.<br />

Analog COMMON is also used as the input low return during<br />

auto-zero and de-integrate. If IN LO is different from analog<br />

COMMON, a common mode voltage exists in the system<br />

and is taken care of by the excellent CMRR of the converter.<br />

However, in some applications IN LO will be set at a fixed<br />

known voltage (power supply common for instance). In this<br />

application, analog COMMON should be tied to the same<br />

point, thus removing the common mode voltage from the<br />

converter. The same holds true for the reference voltage. If<br />

reference can be conveniently tied to analog COMMON, it<br />

should be since this removes the common mode voltage<br />

from the reference system.<br />

Within the lC, analog COMMON is tied to an N-Channel FET<br />

that can sink approximately 30mA of current to hold the<br />

voltage 2.8V below the positive supply (when a load is trying<br />

to pull the common line positive). However, there is only<br />

10µA of source current, so COMMON may easily be tied to a<br />

more negative voltage thus overriding the internal reference.<br />

V<br />

<strong>ICL7106</strong><br />

<strong>ICL7107</strong><br />

FIGURE 4B.<br />

FIGURE 4. USING AN EXTERNAL REFERENCE<br />

TEST<br />

The TEST pin serves two functions. On the <strong>ICL7106</strong> it is<br />

coupled to the internally generated digital supply through a<br />

500Ω resistor. Thus it can be used as the negative supply for<br />

externally generated segment drivers such as decimal points<br />

or any other presentation the user may want to include on<br />

the LCD display. Figures 5 and 6 show such an application.<br />

No more than a 1mA load should be applied.<br />

V+<br />

<strong>ICL7106</strong><br />

REF HI<br />

REF LO<br />

COMMON<br />

BP<br />

TEST<br />

21<br />

20kΩ<br />

The second function is a “lamp test”. When TEST is pulled<br />

high (to V+) all segments will be turned on and the display<br />

should read “1888”. The TEST pin will sink about 15mA<br />

under these conditions.<br />

CAUTION: In the lamp test mode, the segments have a constant DC<br />

voltage (no square-wave). This may burn the LCD display if maintained<br />

for extended periods.<br />

V+<br />

1MΩ<br />

6.8kΩ<br />

ICL8069<br />

1.2V<br />

REFERENCE<br />

TO LCD<br />

DECIMAL<br />

POINT<br />

37 TO LCD<br />

BACKPLANE<br />

FIGURE 5. SIMPLE INVERTER FOR FIXED DECIMAL POINT<br />

7 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

V+<br />

<strong>ICL7106</strong><br />

BP<br />

DECIMAL<br />

POINT<br />

SELECT<br />

V+<br />

TO LCD<br />

DECIMAL<br />

POINTS<br />

absorb the relative large capacitive currents when the back<br />

plane (BP) voltage is switched. The BP frequency is the<br />

clock frequency divided by 800. For three readings/sec., this<br />

is a 60Hz square wave with a nominal amplitude of 5V. The<br />

segments are driven at the same frequency and amplitude<br />

and are in phase with BP when OFF, but out of phase when<br />

ON. In all cases negligible DC voltage exists across the<br />

segments.<br />

TEST<br />

Digital Section<br />

CD4030<br />

GND<br />

FIGURE 6. EXCLUSIVE ‘OR’ GATE FOR DECIMAL POINT DRIVE<br />

Figures 7 and 8 show the digital section for the <strong>ICL7106</strong> and<br />

<strong>ICL7107</strong>, respectively. In the <strong>ICL7106</strong>, an internal digital<br />

ground is generated from a 6V Zener diode and a large<br />

P-Channel source follower. This supply is made stiff to<br />

Figure 8 is the Digital Section of the <strong>ICL7107</strong>. It is identical to<br />

the <strong>ICL7106</strong> except that the regulated supply and back plane<br />

drive have been eliminated and the segment drive has been<br />

increased from 2mA to 8mA, typical for instrument size<br />

common anode LED displays. Since the 1000 output (pin 19)<br />

must sink current from two LED segments, it has twice the<br />

drive capability or 16mA.<br />

In both devices, the polarity indication is “on” for negative<br />

analog inputs. If IN LO and IN HI are reversed, this indication<br />

can be reversed also, if desired.<br />

b<br />

a<br />

e<br />

f<br />

a<br />

b<br />

g<br />

c<br />

d<br />

c<br />

e<br />

f<br />

a<br />

b<br />

g<br />

c<br />

d<br />

e<br />

f<br />

a<br />

b<br />

g<br />

c<br />

d<br />

BACKPLANE<br />

21<br />

LCD PHASE DRIVER<br />

TYPICAL SEGMENT OUTPUT<br />

V+<br />

0.5mA<br />

2mA<br />

SEGMENT<br />

OUTPUT<br />

INTERNAL DIGITAL GROUND<br />

7<br />

SEGMENT<br />

DECODE<br />

LATCH<br />

7<br />

SEGMENT<br />

DECODE<br />

7<br />

SEGMENT<br />

DECODE<br />

1000’s 100’s 10’s 1’s<br />

COUNTER COUNTER COUNTER COUNTER<br />

÷200<br />

† THREE INVERTERS<br />

ONE INVERTER SHOWN FOR CLARITY<br />

TO SWITCH DRIVERS<br />

FROM COMPARATOR OUTPUT<br />

†<br />

CLOCK<br />

÷4<br />

INTERNAL<br />

DIGITAL<br />

GROUND<br />

LOGIC CONTROL<br />

V TH = 1V<br />

1<br />

6.2V<br />

500Ω<br />

37<br />

V+<br />

TEST<br />

40 39 38<br />

26<br />

V-<br />

OSC 1 OSC 2 OSC 3<br />

FIGURE 7. <strong>ICL7106</strong> DIGITAL SECTION<br />

8 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

b<br />

a<br />

e<br />

f<br />

a<br />

b<br />

g<br />

c<br />

d<br />

c<br />

e<br />

f<br />

a<br />

b<br />

g<br />

c<br />

d<br />

e<br />

f<br />

a<br />

b<br />

g<br />

c<br />

d<br />

7<br />

SEGMENT<br />

DECODE<br />

7<br />

SEGMENT<br />

DECODE<br />

7<br />

SEGMENT<br />

DECODE<br />

TYPICAL SEGMENT OUTPUT<br />

V+ LATCH<br />

0.5mA<br />

8mA<br />

DIGITAL GROUND<br />

TO<br />

SEGMENT<br />

† THREE INVERTERS<br />

ONE INVERTER SHOWN FOR CLARITY<br />

TO SWITCH DRIVERS<br />

FROM COMPARATOR OUTPUT<br />

†<br />

V+<br />

CLOCK<br />

1000’s 100’s 10’s 1’s<br />

COUNTER COUNTER COUNTER COUNTER<br />

40 39 38<br />

÷4<br />

LOGIC CONTROL<br />

1<br />

37<br />

500Ω<br />

27<br />

V+<br />

TEST<br />

DIGITAL<br />

GROUND<br />

OSC 1<br />

OSC 2<br />

OSC 3<br />

FIGURE 8. <strong>ICL7107</strong> DIGITAL SECTION<br />

System Timing<br />

Figure 9 shows the clocking arrangement used in the<br />

<strong>ICL7106</strong> and <strong>ICL7107</strong>. Two basic clocking arrangements<br />

can be used:<br />

INTERNAL TO PART<br />

÷4<br />

CLOCK<br />

1. Figure 9A. An external oscillator connected to pin 40.<br />

2. Figure 9B. An R-C oscillator using all three pins.<br />

The oscillator frequency is divided by four before it clocks the<br />

decade counters. It is then further divided to form the three<br />

convert-cycle phases. These are signal integrate (1000<br />

counts), reference de-integrate (0 to 2000 counts) and<br />

auto-zero (1000 to 3000 counts). For signals less than full<br />

scale, auto-zero gets the unused portion of reference<br />

de-integrate. This makes a complete measure cycle of 4,000<br />

counts (16,000 clock pulses) independent of input voltage.<br />

For three readings/second, an oscillator frequency of 48kHz<br />

would be used.<br />

40 39 38<br />

GND <strong>ICL7107</strong><br />

TEST <strong>ICL7106</strong><br />

FIGURE 9A.<br />

INTERNAL TO PART<br />

÷4<br />

CLOCK<br />

To achieve maximum rejection of 60Hz pickup, the signal<br />

integrate cycle should be a multiple of 60Hz. Oscillator<br />

frequencies of 240kHz, 120kHz, 80kHz, 60kHz, 48kHz,<br />

40kHz, 33 1 / 3 kHz, etc. should be selected. For 50Hz<br />

rejection, Oscillator frequencies of 200kHz, 100kHz,<br />

66 2 / 3 kHz, 50kHz, 40kHz, etc. would be suitable. Note that<br />

40kHz (2.5 readings/second) will reject both 50Hz and 60Hz<br />

(also 400Hz and 440Hz).<br />

40 39 38<br />

R<br />

C<br />

RC OSCILLATOR<br />

FIGURE 9B.<br />

FIGURE 9. CLOCK CIRCUITS<br />

9 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

Component Value Selection<br />

Integrating Resistor<br />

Both the buffer amplifier and the integrator have a class A<br />

output stage with 100µA of quiescent current. They can<br />

supply 4µA of drive current with negligible nonlinearity. The<br />

integrating resistor should be large enough to remain in this<br />

very linear region over the input voltage range, but small<br />

enough that undue leakage requirements are not placed on<br />

the PC board. For 2V full scale, 470kΩ is near optimum and<br />

similarly a 47kΩ for a 200mV scale.<br />

Integrating Capacitor<br />

The integrating capacitor should be selected to give the<br />

maximum voltage swing that ensures tolerance buildup will<br />

not saturate the integrator swing (approximately. 0.3V from<br />

either supply). In the <strong>ICL7106</strong> or the <strong>ICL7107</strong>, when the<br />

analog COMMON is used as a reference, a nominal +2V fullscale<br />

integrator swing is fine. For the <strong>ICL7107</strong> with +5V<br />

supplies and analog COMMON tied to supply ground, a<br />

±3.5V to +4V swing is nominal. For three readings/second<br />

(48kHz clock) nominal values for C lNT are 0.22µF and<br />

0.10µF, respectively. Of course, if different oscillator<br />

frequencies are used, these values should be changed in<br />

inverse proportion to maintain the same output swing.<br />

An additional requirement of the integrating capacitor is that<br />

it must have a low dielectric absorption to prevent roll-over<br />

errors. While other types of capacitors are adequate for this<br />

application, polypropylene capacitors give undetectable<br />

errors at reasonable cost.<br />

Auto-Zero Capacitor<br />

The size of the auto-zero capacitor has some influence on<br />

the noise of the system. For 200mV full scale where noise is<br />

very important, a 0.47µF capacitor is recommended. On the<br />

2V scale, a 0.047µF capacitor increases the speed of<br />

recovery from overload and is adequate for noise on this<br />

scale.<br />

Reference Voltage<br />

The analog input required to generate full scale output (2000<br />

counts) is: V lN = 2V REF . Thus, for the 200mV and 2V scale,<br />

V REF should equal 100mV and 1V, respectively. However, in<br />

many applications where the A/D is connected to a<br />

transducer, there will exist a scale factor other than unity<br />

between the input voltage and the digital reading. For<br />

instance, in a weighing system, the designer might like to<br />

have a full scale reading when the voltage from the<br />

transducer is 0.662V. Instead of dividing the input down to<br />

200mV, the designer should use the input voltage directly<br />

and select V REF = 0.341V. Suitable values for integrating<br />

resistor and capacitor would be 120kΩ and 0.22µF. This<br />

makes the system slightly quieter and also avoids a divider<br />

network on the input. The <strong>ICL7107</strong> with ±5V supplies can<br />

accept input signals up to ±4V. Another advantage of this<br />

system occurs when a digital reading of zero is desired for<br />

V IN ≠ 0. Temperature and weighing systems with a variable<br />

fare are examples. This offset reading can be conveniently<br />

generated by connecting the voltage transducer between IN<br />

HI and COMMON and the variable (or fixed) offset voltage<br />

between COMMON and IN LO.<br />

<strong>ICL7107</strong> Power Supplies<br />

The <strong>ICL7107</strong> is designed to work from ±5V supplies.<br />

However, if a negative supply is not available, it can be<br />

generated from the clock output with 2 diodes, 2 capacitors,<br />

and an inexpensive lC. Figure 10 shows this application. See<br />

ICL7660 data sheet for an alternative.<br />

In fact, in selected applications no negative supply is<br />

required. The conditions to use a single +5V supply are:<br />

1. The input signal can be referenced to the center of the<br />

common mode range of the converter.<br />

2. The signal is less than ±1.5V.<br />

3. An external reference is used.<br />

Reference Capacitor<br />

A 0.1µF capacitor gives good results in most applications.<br />

However, where a large common mode voltage exists (i.e.,<br />

the REF LO pin is not at analog COMMON) and a 200mV<br />

scale is used, a larger value is required to prevent roll-over<br />

error. Generally 1µF will hold the roll-over error to 0.5 count<br />

in this instance.<br />

V+<br />

Oscillator <strong>Components</strong><br />

For all ranges of frequency a 100kΩ resistor is recommended<br />

and the capacitor is selected from the equation:<br />

V+<br />

OSC 1<br />

OSC 2<br />

OSC 3<br />

<strong>ICL7107</strong><br />

GND<br />

V-<br />

CD4009<br />

1N914<br />

0.047<br />

µF<br />

1N914<br />

+<br />

10<br />

µF<br />

-<br />

f =<br />

0.45<br />

---------- For 48kHz Clock (3 Readings/sec),<br />

RC<br />

C = 100pF.<br />

V- = 3.3V<br />

FIGURE 10. GENERATING NEGATIVE SUPPLY FROM +5V<br />

10 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

Typical Applications<br />

The <strong>ICL7106</strong> and <strong>ICL7107</strong> may be used in a wide variety of<br />

configurations. The circuits which follow show some of the<br />

possibilities, and serve to illustrate the exceptional versatility<br />

of these A/D converters.<br />

Application Notes<br />

NOTE #<br />

DESCRIPTION<br />

AN016 “Selecting A/D Converters”<br />

AN017 “The Integrating A/D Converter”<br />

The following application notes contain very useful<br />

information on understanding and applying this part and are<br />

available from Intersil Corporation.<br />

AN018<br />

AN023<br />

AN032<br />

AN046<br />

AN052<br />

AN9609<br />

“Do’s and Don’ts of Applying A/D Converters”<br />

“Low Cost Digital Panel Meter Designs”<br />

“Understanding the Auto-Zero and Common Mode<br />

Performance of the ICL7136/7/9 Family”<br />

“Building a Battery-Operated Auto Ranging DVM with the<br />

<strong>ICL7106</strong>”<br />

“Tips for Using Single Chip 3 1 / 2 Digit A/D Converters”<br />

“Overcoming Common Mode Range Issues When Using<br />

Intersil Integrating Converters”<br />

Typical Applications<br />

OSC 1<br />

OSC 2<br />

40<br />

39<br />

100kΩ<br />

TO PIN 1<br />

OSC 1<br />

OSC 2<br />

40<br />

39<br />

100kΩ<br />

TO PIN 1<br />

OSC 3<br />

TEST<br />

38<br />

37<br />

100pF<br />

SET V REF<br />

= 100mV<br />

OSC 3<br />

TEST<br />

38<br />

37<br />

100pF<br />

SET V REF<br />

= 100mV<br />

REF HI<br />

REF LO<br />

C REF<br />

C REF<br />

36<br />

35<br />

34<br />

33<br />

0.1µF<br />

1kΩ<br />

22kΩ<br />

REF HI<br />

REF LO<br />

C REF<br />

C REF<br />

36<br />

35<br />

34<br />

33<br />

0.1µF<br />

1kΩ<br />

22kΩ<br />

+5V<br />

COMMON<br />

IN HI<br />

IN LO<br />

A-Z<br />

BUFF<br />

INT<br />

V -<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

26<br />

0.47µF<br />

0.22µF<br />

47kΩ<br />

1MΩ<br />

0.01µF<br />

+<br />

IN<br />

-<br />

+<br />

-<br />

9V<br />

COMMON<br />

IN HI<br />

IN LO<br />

A-Z<br />

BUFF<br />

INT<br />

V -<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

26<br />

0.47µF<br />

0.22µF<br />

47kΩ<br />

1MΩ<br />

0.01µF<br />

+<br />

IN<br />

-<br />

-5V<br />

G2<br />

25<br />

G2<br />

25<br />

C3<br />

A3<br />

24<br />

23<br />

TO DISPLAY<br />

C3<br />

A3<br />

24<br />

23<br />

TO DISPLAY<br />

G3<br />

22<br />

G3<br />

22<br />

BP<br />

21<br />

TO BACKPLANE<br />

GND<br />

21<br />

Values shown are for 200mV full scale, 3 readings/sec., floating<br />

supply voltage (9V battery).<br />

FIGURE 11. <strong>ICL7106</strong> USING THE INTERNAL REFERENCE<br />

Values shown are for 200mV full scale, 3 readings/sec. IN LO may<br />

be tied to either COMMON for inputs floating with respect to<br />

supplies, or GND for single ended inputs. (See discussion under<br />

Analog COMMON).<br />

FIGURE 12. <strong>ICL7107</strong> USING THE INTERNAL REFERENCE<br />

11 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

Typical Applications (Continued)<br />

OSC 1<br />

OSC 2<br />

40<br />

39<br />

100kΩ<br />

TO PIN 1<br />

OSC 1<br />

OSC 2<br />

40<br />

39<br />

100kΩ<br />

TO PIN 1<br />

OSC 3<br />

TEST<br />

38<br />

37<br />

100pF<br />

SET V REF<br />

= 100mV<br />

OSC 3<br />

TEST<br />

38<br />

37<br />

100pF<br />

SET V REF<br />

= 100mV<br />

REF HI<br />

36<br />

REF HI<br />

36<br />

REF LO<br />

C REF<br />

C REF<br />

COMMON<br />

IN HI<br />

IN LO<br />

A-Z<br />

BUFF<br />

INT<br />

V -<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

26<br />

0.1µF<br />

0.47µF<br />

0.22µF<br />

47kΩ<br />

V +<br />

1kΩ 10kΩ 10kΩ<br />

1.2V (ICL8069)<br />

1MΩ +<br />

0.01µF IN<br />

-<br />

V -<br />

REF LO<br />

C REF<br />

C REF<br />

COMMON<br />

IN HI<br />

IN LO<br />

A-Z<br />

BUFF<br />

INT<br />

V -<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

26<br />

0.1µF<br />

0.47µF<br />

0.22µF<br />

47kΩ<br />

1kΩ<br />

100kΩ<br />

1MΩ<br />

0.01µF<br />

+5V<br />

6.8V<br />

+<br />

IN<br />

-<br />

-5V<br />

G2<br />

25<br />

G2<br />

25<br />

C3<br />

A3<br />

24<br />

23<br />

TO DISPLAY<br />

C3<br />

A3<br />

24<br />

23<br />

TO DISPLAY<br />

G3<br />

22<br />

G3<br />

22<br />

GND<br />

21<br />

GND<br />

21<br />

IN LO is tied to supply COMMON establishing the correct common mode<br />

voltage. If COMMON is not shorted to GND, the input voltage may float<br />

with respect to the power supply and COMMON acts as a pre-regulator<br />

for the reference. If COMMON is shorted to GND, the input is single<br />

ended (referred to supply GND) and the pre-regulator is overridden.<br />

FIGURE 13. <strong>ICL7107</strong> WITH AN EXTERNAL BAND-GAP<br />

REFERENCE (1.2V TYPE)<br />

Since low TC zeners have breakdown voltages ~ 6.8V, diode must<br />

be placed across the total supply (10V). As in the case of Figure 12,<br />

IN LO may be tied to either COMMON or GND.<br />

FIGURE 14. <strong>ICL7107</strong> WITH ZENER DIODE REFERENCE<br />

OSC 1<br />

OSC 2<br />

40<br />

39<br />

100kΩ<br />

TO PIN 1<br />

OSC 1<br />

OSC 2<br />

40<br />

39<br />

100kΩ<br />

TO PIN 1<br />

OSC 3<br />

TEST<br />

38<br />

37<br />

100pF<br />

SET V REF<br />

= 1V<br />

OSC 3<br />

TEST<br />

38<br />

37<br />

100pF<br />

SET V REF<br />

= 100mV<br />

REF HI<br />

36<br />

REF HI<br />

36<br />

REF LO<br />

C REF<br />

C REF<br />

COMMON<br />

IN HI<br />

IN LO<br />

A-Z<br />

BUFF<br />

INT<br />

V -<br />

G2<br />

C3<br />

A3<br />

G3<br />

35<br />

34<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

26<br />

25<br />

24<br />

23<br />

22<br />

0.1µF<br />

0.047µF<br />

0.22µF<br />

470kΩ<br />

TO DISPLAY<br />

25kΩ<br />

24kΩ<br />

1MΩ<br />

0.01µF<br />

V+<br />

+<br />

IN<br />

-<br />

V-<br />

REF LO 35<br />

C REF 34<br />

C REF 33<br />

COMMON 32<br />

IN HI 31<br />

IN LO 30<br />

A-Z 29<br />

BUFF 28<br />

INT 27<br />

V - 26<br />

G2 25<br />

C3 24<br />

A3 23<br />

G3 22<br />

GND 21<br />

0.1µF<br />

0.47µF<br />

0.22µF<br />

47kΩ<br />

TO DISPLAY<br />

1kΩ<br />

10kΩ<br />

1MΩ<br />

0.01µF<br />

15kΩ<br />

1.2V (ICL8069)<br />

+<br />

-<br />

IN<br />

+5V<br />

BP/GND<br />

21<br />

An external reference must be used in this application, since the<br />

voltage between V+ and V- is insufficient for correct operation of the<br />

internal reference.<br />

FIGURE 15. <strong>ICL7106</strong> AND <strong>ICL7107</strong>: RECOMMENDED<br />

COMPONENT VALUES FOR 2V FULL SCALE<br />

FIGURE 16. <strong>ICL7107</strong> OPERATED FROM SINGLE +5V<br />

12 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

Typical Applications (Continued)<br />

OSC 1 40<br />

OSC 2 39<br />

OSC 3 38<br />

TEST 37<br />

REF HI 36<br />

REF LO 35<br />

C REF 34<br />

C REF 33<br />

COMMON 32<br />

IN HI 31<br />

IN LO 30<br />

A-Z 29<br />

BUFF 28<br />

INT 27<br />

V - 26<br />

G2 25<br />

C3 24<br />

A3 23<br />

G3 22<br />

GND 21<br />

100kΩ<br />

100pF<br />

TO PIN 1<br />

0.1µF<br />

0.22µF<br />

0.47µF<br />

47kΩ<br />

TO DISPLAY<br />

The resistor values within the bridge are determined by the desired<br />

sensitivity.<br />

FIGURE 17. <strong>ICL7107</strong> MEASUREING RATIOMETRIC VALUES<br />

OF QUAD LOAD CELL<br />

O/RANGE<br />

U/RANGE<br />

CD4023 OR<br />

74C10<br />

TO LOGIC<br />

V CC<br />

V+<br />

CD4077<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

V+<br />

D1<br />

C1<br />

B1<br />

A1<br />

F1<br />

G1<br />

E1<br />

D2<br />

C2<br />

B2<br />

A2<br />

F2<br />

E2<br />

D3<br />

B3<br />

F3<br />

E3<br />

AB4<br />

POL<br />

FIGURE 19. CIRCUIT FOR DEVELOPING UNDERRANGE AND<br />

OVERRANGE SIGNAL FROM <strong>ICL7106</strong> OUTPUTS<br />

V+<br />

OSC 1<br />

OSC 2<br />

OSC 3<br />

TEST<br />

REF HI<br />

REF LO<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

TO<br />

C REF 34 LOGIC<br />

GND<br />

C REF<br />

COMMON<br />

IN HI<br />

IN LO<br />

A-Z<br />

BUFF<br />

INT<br />

V-<br />

G2<br />

C3<br />

A3<br />

G3<br />

BP<br />

33<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

26<br />

25<br />

24<br />

23<br />

22<br />

21<br />

V-<br />

TO PIN 1<br />

OSC 1 40<br />

100kΩ<br />

OSC 2 39<br />

OSC 3 38<br />

TEST 37 100pF<br />

SCALE<br />

FACTOR<br />

REF HI 36<br />

ADJUST<br />

REF LO 35<br />

22kΩ<br />

C 34<br />

100kΩ 1MΩ<br />

REF<br />

0.1µF 100kΩ 220kΩ<br />

C REF 33<br />

COMMON 32<br />

IN HI 31<br />

ZERO SILICON NPN<br />

0.01µF ADJUST MPS 3704 OR<br />

IN LO 30<br />

0.47µF<br />

SIMILAR<br />

A-Z 29<br />

47kΩ<br />

BUFF 28<br />

9V<br />

INT<br />

V -<br />

G2<br />

27<br />

26<br />

25<br />

0.22µF<br />

C3 24<br />

A3 23<br />

TO DISPLAY<br />

G3<br />

BP<br />

22<br />

21<br />

TO BACKPLANE<br />

A silicon diode-connected transistor has a temperature coefficient of<br />

about -2mV/ o C. Calibration is achieved by placing the sensing<br />

transistor in ice water and adjusting the zeroing potentiometer for a<br />

000.0 reading. The sensor should then be placed in boiling water<br />

and the scale-factor potentiometer adjusted for a 100.0 reading.<br />

FIGURE 18. <strong>ICL7106</strong> USED AS A DIGITAL CENTIGRADE<br />

THERMOMETER<br />

O/RANGE<br />

U/RANGE<br />

CD4023 OR<br />

74C10<br />

TO LOGIC<br />

V CC<br />

+5V<br />

12kΩ<br />

The LM339 is required to<br />

ensure logic compatibility<br />

with heavy display loading.<br />

LM339<br />

+ -<br />

+ -<br />

+ -<br />

+ -<br />

1 V+<br />

2 D1<br />

3 C1<br />

4 B1<br />

5 A1<br />

6 F1<br />

7 G1<br />

8 E1<br />

9 D2<br />

10 C2<br />

11 B2<br />

12 A2<br />

13 F2<br />

14 E2<br />

15 D3<br />

16 B3<br />

17 F3<br />

18 E3<br />

19 AB4<br />

20 POL<br />

33kΩ<br />

OSC 1 40<br />

OSC 2 39<br />

OSC 3 38<br />

TEST 37<br />

REF HI 36<br />

REF LO 35<br />

C REF 34<br />

C REF 33<br />

COMMON 32<br />

IN HI 31<br />

IN LO 30<br />

A-Z 29<br />

BUFF 28<br />

INT 27<br />

V- 26<br />

G2 25<br />

C3 24<br />

A3 23<br />

G3 22<br />

BP 21<br />

FIGURE 20. CIRCUIT FOR DEVELOPING UNDERRANGE AND<br />

OVERRANGE SIGNALS FROM <strong>ICL7107</strong> OUTPUT<br />

V-<br />

13 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

Typical Applications (Continued)<br />

OSC 1<br />

OSC 2<br />

OSC 3<br />

TEST<br />

REF HI<br />

REF LO<br />

C REF<br />

C REF<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

33<br />

TO PIN 1<br />

100kΩ<br />

100pF<br />

0.1µF<br />

1kΩ<br />

10µF<br />

22kΩ<br />

SCALE FACTOR ADJUST<br />

(V REF = 100mV FOR AC TO RMS)<br />

470kΩ<br />

1N914<br />

5µF CA3140<br />

2.2MΩ<br />

+<br />

-<br />

100kΩ<br />

AC IN<br />

COMMON<br />

IN HI<br />

IN LO<br />

A-Z<br />

BUFF<br />

INT<br />

V -<br />

32<br />

31<br />

30<br />

29<br />

28<br />

27<br />

26<br />

0.47µF<br />

47kΩ<br />

0.22µF<br />

10µF<br />

+<br />

9V<br />

-<br />

1µF<br />

4.3kΩ<br />

10kΩ<br />

1µF<br />

100pF<br />

(FOR OPTIMUM BANDWIDTH)<br />

10kΩ<br />

1µF<br />

0.22µF<br />

G2<br />

25<br />

C3<br />

A3<br />

24<br />

23<br />

TO DISPLAY<br />

G3<br />

22<br />

BP<br />

21<br />

TO BACKPLANE<br />

Test is used as a common-mode reference level to ensure compatibility with most op amps.<br />

FIGURE 21. AC TO DC CONVERTER WITH <strong>ICL7106</strong><br />

+5V<br />

<strong>ICL7107</strong><br />

DM7407<br />

130Ω<br />

LED<br />

SEGMENTS<br />

130Ω<br />

130Ω<br />

FIGURE 22. DISPLAY BUFFERING FOR INCREASED DRIVE CURRENT<br />

14 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

15 FN3082.5


Dual-In-Line Plastic Packages (PDIP)<br />

<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

INDEX<br />

AREA<br />

BASE<br />

PLANE<br />

SEATING<br />

PLANE<br />

D1<br />

B1<br />

-C-<br />

-A-<br />

N<br />

1 2 3 N/2<br />

B<br />

D<br />

e<br />

D1<br />

E1<br />

NOTES:<br />

1. Controlling Dimensions: INCH. In case of conflict between English<br />

and Metric dimensions, the inch dimensions control.<br />

2. Dimensioning and tolerancing per ANSI Y14.5M-1982.<br />

3. Symbols are defined in the “MO Series Symbol List” in Section 2.2<br />

of Publication No. 95.<br />

4. Dimensions A, A1 and L are measured with the package seated in<br />

JEDEC seating plane gauge GS-3.<br />

5. D, D1, and E1 dimensions do not include mold flash or protrusions.<br />

Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).<br />

6. E and e A are measured with the leads constrained to be perpendicular<br />

to datum -C- .<br />

7. e B and e C are measured at the lead tips with the leads unconstrained.<br />

e C must be zero or greater.<br />

8. B1 maximum dimensions do not include dambar protrusions. Dambar<br />

protrusions shall not exceed 0.010 inch (0.25mm).<br />

9. N is the maximum number of terminal positions.<br />

10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,<br />

E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).<br />

-B-<br />

A1<br />

0.010 (0.25) M C A<br />

A2<br />

L<br />

B S<br />

A<br />

e C<br />

C L<br />

E<br />

e A<br />

C<br />

e B<br />

E40.6 (JEDEC MS-011-AC ISSUE B)<br />

40 LEAD DUAL-IN-LINE PLASTIC PACKAGE<br />

INCHES<br />

MILLIMETERS<br />

SYMBOL MIN MAX MIN MAX NOTES<br />

A - 0.250 - 6.35 4<br />

A1 0.015 - 0.39 - 4<br />

A2 0.125 0.195 3.18 4.95 -<br />

B 0.014 0.022 0.356 0.558 -<br />

B1 0.030 0.070 0.77 1.77 8<br />

C 0.008 0.015 0.204 0.381 -<br />

D 1.980 2.095 50.3 53.2 5<br />

D1 0.005 - 0.13 - 5<br />

E 0.600 0.625 15.24 15.87 6<br />

E1 0.485 0.580 12.32 14.73 5<br />

e 0.100 BSC 2.54 BSC -<br />

e A 0.600 BSC 15.24 BSC 6<br />

e B - 0.700 - 17.78 7<br />

L 0.115 0.200 2.93 5.08 4<br />

N 40 40 9<br />

Rev. 0 12/93<br />

16 FN3082.5


<strong>ICL7106</strong>, <strong>ICL7107</strong>, <strong>ICL7107</strong>S<br />

Metric Plastic Quad Flatpack Packages (MQFP)<br />

D<br />

D1<br />

-D-<br />

Q44.10x10 (JEDEC MS-022AB ISSUE B)<br />

44 LEAD METRIC PLASTIC QUAD FLATPACK PACKAGE<br />

INCHES<br />

MILLIMETERS<br />

SYMBOL<br />

MIN MAX MIN MAX<br />

NOTES<br />

A - 0.096 - 2.45 -<br />

A1 0.004 0.010 0.10 0.25 -<br />

-A-<br />

-B-<br />

A2 0.077 0.083 1.95 2.10 -<br />

E E1<br />

b 0.012 0.018 0.30 0.45 6<br />

b1 0.012 0.016 0.30 0.40 -<br />

D 0.515 0.524 13.08 13.32 3<br />

D1 0.389 0.399 9.88 10.12 4, 5<br />

e<br />

E 0.516 0.523 13.10 13.30 3<br />

E1 0.390 0.398 9.90 10.10 4, 5<br />

PIN 1<br />

L 0.029 0.040 0.73 1.03 -<br />

N 44 44 7<br />

12 o -16 o<br />

A2 A1<br />

12 o -16 o<br />

0.20<br />

0.008<br />

M<br />

C<br />

0.13/0.17<br />

0.005/0.007<br />

A<br />

A-B S D S<br />

b<br />

b1<br />

SEATING<br />

PLANE<br />

-C-<br />

0.076<br />

0.003<br />

BASE METAL<br />

WITH PLATING<br />

0.13/0.23<br />

0.005/0.009<br />

-H-<br />

0.40<br />

0.016 MIN<br />

0 o MIN<br />

0 o -7 o<br />

L<br />

e 0.032 BSC 0.80 BSC -<br />

Rev. 2 4/99<br />

NOTES:<br />

1. Controlling dimension: MILLIMETER. Converted inch<br />

dimensions are not necessarily exact.<br />

2. All dimensions and tolerances per ANSI Y14.5M-1982.<br />

3. Dimensions D and E to be determined at seating plane -C- .<br />

4. Dimensions D1 and E1 to be determined at datum plane<br />

-H- .<br />

5. Dimensions D1 and E1 do not include mold protrusion.<br />

Allowable protrusion is 0.25mm (0.010 inch) per side.<br />

6. Dimension b does not include dambar protrusion. Allowable<br />

dambar protrusion shall be 0.08mm (0.003 inch) total.<br />

7. “N” is the number of terminal positions.<br />

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.<br />

Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality<br />

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without<br />

notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and<br />

reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result<br />

from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.<br />

For information regarding Intersil Corporation and its products, see www.intersil.com<br />

17<br />

FN3082.5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!