Skip to main content

Life Management of Alloy 625 Components

  • Chapter
  • First Online:
Alloy 625

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 380 Accesses

Abstract

 Alloy 625 is being used for various applications in the chemical, marine, nuclear, power generation, and aerospace industries. Most of these applications are at temperatures in the intermediate temperature range, at which the alloy undergoes microstructure modifications and, consequently, mechanical properties changes below the codal requirements. Fortunately, in most cases, the degradations can be reversed to rejuvenate the lost properties. This chapter provides details of property deterioration due to such microstructural changes and assesses the alloy damage during in-service inspection of plants. The chapter also provides criteria for the damage evaluation for various destructive and non-destructive testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cortial F, Corrieu JM, Vernot-Loier C (1995) Influence of heat treatments on microstructure, mechanical properties, and corrosion resistance of weld alloy 625. Metall Mater Trans A 26:1273–1286. https://doi.org/10.1007/BF02670621

    Article  Google Scholar 

  2. Floreen S, Fuchs GE, Yang WJ (1994) The metallurgy of alloy 625. In: Loria EA (ed), Superallovs 718, 625, 706 various derivatives. The Minerals, Metals & Materials Society, Pittsburgh, PA, USA, pp 13–38.

    Google Scholar 

  3. Eiselstein HL, Tillack DJ (1991) Superalloys 718, 625, 706 and various derivatives, In: Loria EA (ed) Superalloys 718, 625, 706 various derivatives. The Minerals, Metals, and Materials Society, Pittsburgh, PA, pp 1–14

    Google Scholar 

  4. Shoemaker LE (2005) In: Loria EA (ed) Superalloys 718, 625, 706 derivatives. The Minerals, Metals, and Materials Society, Pittsburgh, PA, pp 409–418

    Google Scholar 

  5. Vernot-Loier C, Cortial F (1991) Loria EA (ed) Superalloys 718, 625 various derivatives. The Minerals, Metals, and Materials Society, Pittsburgh, PA, pp 409–422

    Google Scholar 

  6. Rakowski JM, Stinner CP, Lipschutz M, Montague JP. In: Loria EA (ed) Superalloys 718, 625, 706 derivatives. The Minerals, Metals, and Materials Society, Pittsburgh, PA, pp 271–286

    Google Scholar 

  7. Shankar V, Bhanu Sankara Rao K, Mannan SL (2001) Microstructure and mechanical properties of Inconel 625 superalloy. J Nucl Mater 288:222–232. https://doi.org/10.1016/S0022-3115(00)00723-6

  8. Sundararaman M, Kumar L, Prasad GE, Mukhopadhyay P, Banerjee S (1999) Precipitation of an intermetallic phase with Pt2Mo-type structure in alloy 625. Metall Mater Trans A 30:41–52. https://doi.org/10.1007/s11661-999-0194-6

    Article  Google Scholar 

  9. Thomas C, Tait P (1994) The performance of Alloy 625 in long-term intermediate temperature applications. Int J Press Vessel Pip 59:41–49. https://doi.org/10.1016/0308-0161(94)90140-6

  10. Shankar V, Valsan M, Bhanu Sankara Rao K, Mannan SL (2001) Room temperature tensile behavior of service exposed and thermally aged service exposed alloy 625. Scr Mater 44:2703–2711. https://doi.org/10.1016/S1359-6462(01)00965-4

  11. Chakravartty JK, Singh JB, Sundararaman M (2012) Microstructural and mechanical properties of service exposed Alloy 625 ammonia cracker tube removed after 100,000 h. Mater Sci Technol 28:702–710. https://doi.org/10.1179/1743284711Y.0000000118

    Article  CAS  Google Scholar 

  12. Singh JB, Verma A, Jaiswal DM, Kumar N, Patel RD, Chakravartty JK (2015) Rejuvenation of service exposed ammonia cracker tubes of cast Alloy 625 and their re-use. Mater Sci Eng A 644:254–267. https://doi.org/10.1016/j.msea.2015.06.098

  13. Suave LM, Cormier J, Villechaise P, Soula A, Hervier Z, Bertheau D, Laigo J (2014) Microstructural evolutions during thermal aging of alloy 625: Impact of temperature and forming process. Metall Mater Trans A Phys Metall Mater Sci 45:2963–2982. https://doi.org/10.1007/s11661-014-2256-7

  14. Viswanathan R, Dooley RB (1986) Creep life assessment techniques for fossil power plant boiler pressure parts. In: Life prediction for high temperature gas turbine materials, pp 2.1–2.28

    Google Scholar 

  15. Viswanathan R (1989) Damage mechanisms and life assessment of high temperature components. ASM international

    Google Scholar 

  16. Coade R (1985) Temperature determination based on microstructural changes occurring in 1% Cr-0.5% Mo steel, Report No. SO/85/87. State Electricity Commission of Victoria, Australia

    Google Scholar 

  17. Kumar A, Rajkumar KV, Jayakumar T, Raj B, Mishra B (2006) Ultrasonic measurements for in-service assessment of wrought Inconel 625 cracker tubes of heavy water plants. J Nucl Mater 350:284–292. https://doi.org/10.1016/j.jnucmat.2006.01.011

  18. Kumar A, Shankar V, Jayakumar T, Rao KBS, Raj B (2002) Correlation of microstructure and mechanical properties with ultrasonic velocity in the Ni-based superalloy Inconel 625. Philos Mag A 82:2529–2545. https://doi.org/10.1080/01418610208240051

    Article  CAS  Google Scholar 

  19. Shankar V, Valsan M, Rao KBS, Mannan SL (2004) Effects of temperature and strain rate on tensile properties and activation energy for dynamic strain aging in alloy 625. Metall Mater Trans A 35:3129–3139. https://doi.org/10.1007/s11661-004-0057-0

    Article  Google Scholar 

  20. Rosen M, Horowitz E, Fick S, Reno RC, Mehrabian R (1982) An investigation of the precipitation-hardening process in aluminum alloy 2219 by means of sound wave velocity and ultrasonic attenuation. Mater Sci Eng 53:163–177. https://doi.org/10.1016/0025-5416(82)90049-0

  21. Rosen M, Ives L, Ridder S, Biancaniello F, Mehrabian R (1985) Correlation between ultrasonic and hardness measurements in aged aluminum alloy 2024. Mater Sci Eng 74:1–10. https://doi.org/10.1016/0025-5416(85)90104-1

  22. Jayakumar T (1997) Microstructural characterisation in metallic materials using ultrasonic and magnetic methods. Saarbruecken, Germany

    Google Scholar 

  23. Kumar A, Jayakumar T, Raj B, Ray KK (2003) Correlation between ultrasonic shear wave velocity and Poisson’s ratio for isotropic solid materials. Acta Mater 51:2417–2426. https://doi.org/10.1016/S1359-6454(03)00054-5

  24. James LA (n.d.) Effect of temperature upon the fatigue-crack propagation behavior of Inconel 625. https://doi.org/10.2172/7257141

  25. Anderson TL (2017) Fracture mechanics: fundamentals and applications. CRC Press, p 64

    Google Scholar 

  26. Data sheet Inconel alloy 625 (2013). https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-625.pdf

  27. Neubauer B, Wedel U (1983) Rest life estimation of creeping components by means of replicas. In: Woodford DA, Whitehead JR (eds) Advances in life prediction methods. American Society of Mechanical Engineers, New York, pp 307–314

    Google Scholar 

  28. Aoto K, Wada Y (1995) Concept of design criteria of low dose irradiation for FBR structural materials. International Atomic Energy Agency (IAEA), IAEA-TECDOC-817, pp 79–87. http://inis.iaea.org/search/search.aspx?orig_q=RN:26077454

  29. Raman VV, Prasad GE, Das Gupta P (1987) Deformation behaviour of Inconel 625 at various temperatures. Trans Ind Inst Met 40:113–120

    Google Scholar 

  30. Singh JB, Verma A, Paul B, Chakravartty JK (2013) Failure of Alloy 625 tube stub ends—Effect of primary nitrides. Eng Fail Anal 32:236–247. https://doi.org/10.1016/j.engfailanal.2013.03.018.

  31. Mathew MD, Bhanu Sankara Rao K, Mannan SL, Creep properties of service-exposed Alloy 625 after re-solution annealing treatment, Mater Sci Eng A 372:327–333. https://doi.org/10.1016/j.msea.2004.01.042

  32. Mills WJ (1987) Fracture toughness of thermally aged alloy 718 weld metal. Weld J 66:113

    Google Scholar 

  33. Liu P, Nilsson J-O (1990) Effect of long term aging on mechanical properties and microstructure of nickel base weld. Mater Sci Technol 6:764–771. https://doi.org/10.1179/mst.1990.6.8.764

    Article  CAS  Google Scholar 

  34. Singh JB, Verma A, Murty TN, Khan S, Karri M, Fish-mouth opening of an Alloy 625 ammonia cracker tube. Eng Fail Anal (Under Review)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Bahadur Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, J.B. (2022). Life Management of Alloy 625 Components. In: Alloy 625 . Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-1562-8_8

Download citation

Publish with us

Policies and ethics