Skip to main content

Abstract

This chapter highlights the advantages of a tight integration between the IoT communication protocol on the one hand and lightweight cryptography on the other. This is illustrated in the multilayer integration of edge-coded signaling (ECS) with a novel, parallel, low-latency version of the A5/1 keystream cipher.

Encryption works. Properly implemented strong crypto systems are one of the few things that you can rely on.

Edward Snowden

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notation ∥ is used for the concatenation operator.

References

  1. T. Akishita, H. Hiwatari, Compact Hardware Implementations of the 128-bit Blockcipher CLEFIA, in Proceedings of Symposium on Cryptography and Information Security (SCIS 2011), Aug 2011, pp. 278–292

    Google Scholar 

  2. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376, Fourth quarter (2015)

    Google Scholar 

  3. R. Anderso, A5 (was: Hacking digital phones), in Newsgroup: uk.telecom

    Google Scholar 

  4. S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, F. Regazzoni, Midori: a block cipher for low energy (extended version). Cryptology ePrint Archive, Report 2015/1142 (2015). https://eprint.iacr.org/2015/1142

  5. E. Barkan, E. Biham, N. Keller, Instant ciphertext-only cryptanalysis of GSM encrypted communication. Technion, Technical Report CS-2006-07 (2006)

    Google Scholar 

  6. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, L. Wingers, The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404 (2013). https://eprint.iacr.org/2013/404

  7. A. Biryukov, A. Shamir, D. Wagner, Real time cryptanalysis of A5/1 on a PC, in Fast Software Encryption Workshop 2000, April 2000

    Google Scholar 

  8. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J. Robshaw, Y. Seurin, C. Vikkelsoe, PRESENT: an ultra-lightweight block cipher, in International Workshop on Cryptographic Hardware and Embedded Systems (2007), pp. 450–466

    Google Scholar 

  9. Q. Du, J. Zhuang, T. Kwasniewski, A 2.5 Gb/s, low power clock and data recovery circuit, in 20th Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, April 2007, pp. 526–529

    Google Scholar 

  10. S. Even, O. Goldreich, On the power of cascade ciphers, in ACM Transactions on Computer Systems (TOCS), May 1985, pp. 108–116

    Google Scholar 

  11. M. Feldhofer, J. Wolkerstorfer, V. Rijmen, AES implementation on a grain of sand. IEE Proc. Inf. Secur. 152(1), 13–20 (2005)

    Article  Google Scholar 

  12. J.Dj. Golic, Cryptanalysis of alleged A5 stream cipher, in International Conference on the Theory and Application of Cryptographic Techniques, May 1997, pp. 239–255

    Google Scholar 

  13. T. Good, M. Benaiss, Hardware results for selected stream cipher candidates, in State of the Art of Stream Ciphers 2007 (SASC 2007), Feb 2007

    Google Scholar 

  14. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.S. Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H. Kim, HIGHT: a new block cipher suitable for low-resource device, in International Workshop on Cryptographic Hardware and Embedded Systems (2006), pp. 46–59

    Google Scholar 

  15. M. Katagi, S. Moria, Lightweight cryptography for the internet of things, in Sony Corporation (2012)

    Google Scholar 

  16. B. Koo, D. Roh, H. Kim, Y. Jung, D.-G. Lee, D. Kwon, CHAM: A Family of Lightweight Block Ciphers for Resource-Constrained Devices (Springer, Berlin, 2018), pp. 3–25

    MATH  Google Scholar 

  17. M. Kumar, S.K. Pal, A. Panigrahi, FeW: a lightweight block cipher, in IACR Cryptology ePrint Archive (2014), pp. 326

    Google Scholar 

  18. M. Loh, A. Emami-Neyestanak, All-digital CDR for high-density, high-speed I/O, in 12th IEEE Symposium on VLSI Circuits (VLSIC’10), Honolulu, HI, June 2010, pp. 147–148

    Google Scholar 

  19. M. Loh, A. Emami-Neyestanak, A 3x9 Gb/s shared, all-digital CDR for high-speed, high-density I/O. IEEE J. Solid State Circuits 47(3), 641–651 (2012)

    Article  Google Scholar 

  20. F. Mace, F.-X. Standaert, J.-J. Quisquater, ASIC implementations of the block cipher SEA for constrained applications, in RFID Security - RFIDsec 2007, Malaga, July 2007, pp. 103–114

    Google Scholar 

  21. B.J. Mohd, T. Hayajneh, Lightweight block ciphers for IoT: energy optimization and survivability techniques. IEEE Access 6, 35966–35978 (2018)

    Article  Google Scholar 

  22. A. Poschmann, Lightweight cryptography - cryptographic engineering for a pervasive world, in IACR ePrint archive 2009/516 (2009)

    Google Scholar 

  23. Postscapes, IoT Standards and Protocols. https://www.postscapes.com/internet-of-things- protocols/

  24. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, T. Shirai, Piccolo: an ultra-lightweight blockcipher, in International Workshop on Cryptographic Hardware and Embedded Systems (2011), pp. 342–357

    Google Scholar 

  25. T. Shirai et al., The 128-bit blockcipher CLEFIA, in International Workshop on Fast Software Encryption (2007)

    Google Scholar 

  26. L.-K. Soh, W.-T. Wong, A 2.5-12.5 Gbps interpolator-based clock and data recovery circuit for FPGA, in 4th Asia Symposium on Quality Electronic Design (ASQED), Penang, July 2012, pp. 373–379

    Google Scholar 

  27. M. Stamp, Information Security: Principles and Practices, 2nd edn. (Wiley, New York, 2011)

    Book  Google Scholar 

  28. Y. Urano, W.-J. Yun, T. Kuroda, H. Ishikuro, A 1.26mW/Gbps 8 locking cycles versatile all-digital CDR with TDC combined DLL, in 45th IEEE International Symposium on Circuits and Systems (ISCAS’13), Beijing, May 2013, pp. 1576–1579

    Google Scholar 

  29. W. Wu, L. Zhang, LBlock: a lightweight block cipher, in International Conference on Applied Cryptography and Network Security (2011), pp. 327–344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muzaffar, S., Elfadel, I.A.M. (2022). Secure ECS Communication. In: Secure, Low-Power IoT Communication Using Edge-Coded Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-95914-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95914-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95913-5

  • Online ISBN: 978-3-030-95914-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics