22,9K подписчиков

Распространенные способы подключения светодиодов к сетевому напряжению 220 В, варианты схем, пояснение их работы, какие лучше

25K прочитали

- В этой статье хотелось рассмотреть несколько принципиальных схем подключения обычных индикаторных светодиодов к сетевому напряжению 220 В. Также постараемся с вами разобраться с принципом их действия, выявить имеющиеся достоинства и недостатки.

Распространенные способы подключения светодиодов к сетевому напряжению 220 В
Распространенные способы подключения светодиодов к сетевому напряжению 220 В

Для начала стоит уточнить, как именно работает обычный светодиод.

Как работает обычный светодиод
Как работает обычный светодиод

Светодиод подобен обычному диоду. В одну сторону он проводит ток, в другую сторону не проводит. У светодиода имеются два вывода, это катод и анод. Если на анод подать плюс источника питания, а на катод минус, необходимого для работы напряжения, то светодиод будет светиться. И это называется прямым включением. Если плюс и минус поменять местами, то светодиод гореть не будет. Это будет уже обратное включение светодиода к источнику питания.

При прямом включении (когда светодиод светится) между катодом и анодом имеется определенное падение напряжения. И в зависимости от цвета светодиода это напряжение может быть в пределах от 1,8 вольт (красный цвет) до 4,5 вольт (синий цвет).

Нормальным током для индикаторных светодиодов считается 20 мА (миллиампер). Допустимо немного превышать это значение, ну пусть до 30 мА. Но вот при большем долговременном токе светодиоды такого типа просто сгорят от перегрева своего кристалла. Хотя кратковременно такие светодиоды могу выдержать и ток до 100 мА (но так лучше не делать).

При обратном включении светодиод через себя ток не пропускает, он закрыт. Ток конечно течет (ток утечки), но его величина очень и очень мала (какие-то микроамперы). При этом напряжение на светодиоде будет равно приложенному к нему напряжению. При этом стоит учесть, что у обычных индикаторных светодиодов максимальное обратное напряжение не так уж и велико (в большинстве случаев где-то до 5 вольт). То есть, если при обратном включении на светодиод подать более 5 вольт, то большая вероятность, что он просто выйдет из строя из-за электрического пробоя.

А теперь давайте рассмотрим с вами сами схемы включения светодиодов к сетевому, переменному напряжению 220 вольт. И опять же, для новичков стоит уточнить, что переменное напряжение отличается от постоянного тем, что оно периодически меняет свою полярность на противоположную. И так за секунду аж 100 раз (при частоте 50 Гц).

Схема №1.

Схема подключения светодиода к сети 220V через резистор, ограничивающий ток
Схема подключения светодиода к сети 220V через резистор, ограничивающий ток

Данная схема является наиболее простой и обычно именно так индикаторный светодиод пытаются подключить к сетевому напряжению 220 вольт. Что в этой схеме не так. Вроде бы мы ток ограничили дополнительным сопротивлением на 24 ком. И величина тока в этой цепи не должна превышать величины в 10 мА (если быть точнее то 9,1 мА, то есть, мы 220 разделили на 24000 Ом и получили силу тока). Светодиод сгореть не должен от чрезмерного тока. Но он может выйти из строя из-за электрического пробоя при обратном подключении, во время работы противоположной волны переменного напряжения. Поскольку к светодиоду прикладывается все 220 вольт, а если быть точнее и говорить об амплитудном значении напряжения, то все 310 вольт. А как я уже ранее написал, что у обычных светодиодов максимальное обратное напряжение где-то всего до 40 вольт. Вот и велика вероятность электрического пробоя полупроводника при таком вот его подключении к 220 вольт. Поэтому данный вариант схемы является потенциально не рабочим, хотя некоторое время работать возможно и будет.

Схема №2.

Схема подключения светодиода к 220 вольт с диодной защитой этого светодиода
Схема подключения светодиода к 220 вольт с диодной защитой этого светодиода

В этой схеме мы и ток ограничили резистором R1 до безопасного значения при прямом включении светоизлучающего полупроводника и защитили светодиод от электрического пробоя высоким напряжением при обратном его включении. Для тех, кто не понял как работает в этой схеме защитный диод, поясняю. Дело в том, что когда идет противоположная волна переменного тока, то напряжение, величиной 220 вольт, делится между имеющимися тремя элементами – резистор R1, светодиод VD1 и обычный диод VD2. При обратном подключении внутренняя проводимость как у диода, так и у светодиода очень и очень мала. То есть, это подобно тому, что эти элементы при таком подключении имеют бесконечно большое сопротивление. И поэтому благодаря защитному диоду ток утечки полупроводника настолько мал, что его не хватает для полноценного электрического пробоя светодиода. Следовательно, наш светодиод защищен от перенапряжения.

Но в данной схеме все же есть свой недостаток. Это мерцания светодиода с частотой 25 Гц. То есть, при работе только с одной полу волной переменного тока мы из 50 Гц получаем половину (25 Гц). К сожалению, эта частота заметна глазу и она вызывает некий дискомфорт для восприятия. И еще один недостаток, которым обладают все эти схемы, где используется токоограничительный резистор на 24 кОм. Это его относительно большой нагрев. Это если мы 220 В перемножим на 10 мА, то получим мощность, оседающую на резисторе порядка 2,2 Вт. Поэтому в такие схемы ставятся резисторы мощностью не менее 2 Вт, а то и все 5 Вт.

Схема №3.

Схема с защитным диодом, подключенным параллельно светодиоду
Схема с защитным диодом, подключенным параллельно светодиоду

Данная схема также защищена от перенапряжения при обратном включении светодиода, но тут, как видно, защитный диод стоит параллельно светодиоду. Работа это схемы проста. Как известно, при прямом включении обычного диода на между его катодом и анодом появляется падение напряжения где-то от 0,6 вольт (при малых токах, проходящих через этот диод) до 1,2 вольта (при больших токах). Следовательно, при прямой волне переменного тока у нас будет светится светодиод и на нем будет падение напряжения около 3 вольт. А при противоположной волне переменного тока у нас прямое подключение будет иметь защитный диод VD2. На котором будет около 0,6 вольт. При этом величина тока в этот полупериод также будет около 10 мА. Если сравнивать эту схему и предыдущую, то вариант №2 пожалуй будет лучше, поскольку не тратится лишняя энергия на защитный диод.

Схема №4.

Схема питания светодиода от сети 220V с учетом электробезопасности
Схема питания светодиода от сети 220V с учетом электробезопасности

По своей работе и по характеристикам эта схема полностью идентична схеме №2. Но тут учтена безопасность самого человека, который случайно может прикоснутся к токовещущей части этой схемы. А именно, если в схеме №2 фазовый провод будет подключен к месту, что ближе к светодиоду и диоду, то при случайном прикосновении человека к этим местам цепи он может получить значительные повреждения от удара током. Величина тока будет максимальной, и она будет зависеть только от сопротивления тела самого человека. Следовательно, есть большая вероятность получить очень сильный удар током. В схеме №4 мы один общий резистор на 24 кОм разделили на два резистора по 12 кОм. Общее сопротивление осталось также 24 кОм, но вот при случайном прикосновении человека к электрической цепи около светодиода удара будет уже ограничен нашим дополнительным сопротивлением. В итоге поражение током будет гораздо меньше, чем в первом случае.

Схема №5.

Схема с двумя светодиодами, питающиеся от сетевого напряжения 220V
Схема с двумя светодиодами, питающиеся от сетевого напряжения 220V

Данная схема защищена от перенапряжения при обратном включении дополнительным светодиодом. То есть, при одной полу волне будет работать и светиться один светодиод. На котором будет падение напряжения около 3 вольт. А при противоположной волне переменного тока будет работать второй светодиод, на котором также будет падение напряжения около 3 вольт. Хотя мерцание все же будет заметно глазу, также как и будет происходить нагрев самого резистора.

Схема №6.

Схема, где используется ионная лампа в роли светового индикатора
Схема, где используется ионная лампа в роли светового индикатора

Хотя мы и рассматриваем тему подключения именно индикаторных светодиодов к сети 220 вольт, но не стоит сбрасывать со счетов обычную ионную лампу. Ее работа принципиально отличается от работы светодиода. Если для свечения светодиода нужен именно ток, то для ионной лампы нужно определенная величина именно напряжения. Обычные ионные лампы зажигаются от приложенного напряжения величиной более 70 вольт. Причем сила тока очень маленькая. Свечение происходит за счет ионизации газа внутри лампы. Сила свечения не такая уж и большая, но для индикации вполне хватает. Ну, а схему подключения вы можете увидеть на рисунке выше.

Схема №7.

Схема подключения светодиода к сети 220 вольт с использованием простого бестрансформаторного блока питания с гасящим конденсатором
Схема подключения светодиода к сети 220 вольт с использованием простого бестрансформаторного блока питания с гасящим конденсатором

Данная схема является лучшей, среди ранее рассмотренных. Хотя она и содержит больше всего электронных компонентов. Дело в том, что в ней отсутствуют все те недостатки, которые были присущи всем предыдущим схемам. Поскольку в место токоограничительного резистора в этой схеме стоит гасящий конденсатор C1, то нет нагрева этого компонента и не тратится лишняя электроэнергия. Также в данной схеме практически не заметны мерцания поскольку частота полу волн тут уже равна 100 Гц. Увеличение частоты произошло за счет переворачивания полу волн диодным мостом VD2, собранном на диодах. И также отсутствует проблема, связанная с опасностью пробоя светодиода от высокого обратного напряжения. Обратного напряжения просто нет, опять же за счет использования диодного моста.

И несколько слов о самой работе данной схемы питания индикаторного светодиода от напряжения 220 вольт. Итак, сила тока ограничивается гасящим конденсатором (обязательно должен быть пленочным, не полярным). Величина ограниченного тока зависит от емкости этого конденсатора. Ниже будет таблица зависимости тока от емкости. Емкость в 330 нФ будет соответствовать максимальному току в 22 мА, что для индикаторных светодиодов является номинальным значением.

Параллельно гасящему конденсатору C1 стоит резистор R1, который нужен только для того, чтобы разряжать конденсатор после выключения схемы от сети. Этот резистор не нагревается, поскольку имеет достаточно большое сопротивление. Далее стоит обычный выпрямительный диодный мост. Он из переменного тока делает постоянный, хотя и пульсирующий. Но эти пульсации особо не заметны для глаза. Поскольку ток потребления светодиодом всего до 20 мА, то тут диоды подойдут любые выпрямительные. Я в схеме поставил наиболее распространенные типа 1n4007 (максимальный прямой ток до 1А, максимальное обратное напряжение до 1000 вольт). Еще в схеме стоит дополнительный резистор R2. Он нужен для того, чтобы обезопасить схему в случае возникновения непредвиденных скачков напряжения. Тем самым ограничив ток для безопасного уровня для питания индикаторного светодиода.

Ниже приведена таблица зависимости тока от емкости гасящего конденсатора.

Таблица зависимости тока от емкости гасящего конденсатора
Таблица зависимости тока от емкости гасящего конденсатора

Ниже можно посмотреть видео по данной теме.