US7059072B2 - Subsoiling excavator bucket - Google Patents

Subsoiling excavator bucket Download PDF

Info

Publication number
US7059072B2
US7059072B2 US10/781,487 US78148704A US7059072B2 US 7059072 B2 US7059072 B2 US 7059072B2 US 78148704 A US78148704 A US 78148704A US 7059072 B2 US7059072 B2 US 7059072B2
Authority
US
United States
Prior art keywords
bucket
subsoiling
shank
socket
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/781,487
Other versions
US20040187364A1 (en
Inventor
James G. Archuleta, Jr.
Michael W. Karr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Agriculture USDA
Original Assignee
US Department of Agriculture USDA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Agriculture USDA filed Critical US Department of Agriculture USDA
Priority to US10/781,487 priority Critical patent/US7059072B2/en
Assigned to AGRICULTURE, UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF, THE reassignment AGRICULTURE, UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARCHULETA, JAMES G., JR., KARR, MICHAEL W.
Priority to PCT/US2004/004870 priority patent/WO2004073382A2/en
Priority to AU2004213013A priority patent/AU2004213013B2/en
Priority to CA2515960A priority patent/CA2515960C/en
Publication of US20040187364A1 publication Critical patent/US20040187364A1/en
Application granted granted Critical
Publication of US7059072B2 publication Critical patent/US7059072B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/40Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/962Mounting of implements directly on tools already attached to the machine
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/30Auxiliary apparatus, e.g. for thawing, cracking, blowing-up, or other preparatory treatment of the soil
    • E02F5/305Arrangements for breaking-up hard ground

Definitions

  • This invention is related to provisional application 60/448,776, filed Feb. 20, 2003 and also to commonly-owned application assignable to the United States of America, as Represented by the Secretary of Agriculture, having the title “Subsoiling Grapple Rake” and Ser. No. 10/781,612 and naming James Geronimo Archuleta, Jr. and Michael William Karr as inventors, both herein incorporated by reference.
  • This invention relates to a multi-purpose implement for conducting dissimilar forest and soil management activities, including excavation and subsoiling (especially as related to soil productivity and restoration).
  • the invention finds particular application in the decommissioning of forest roads, new temporary roads, skid trails and landings logging roads and in the growth and vigor of natural and planted trees and forage shrubs expected to grow on decommissioned roads. New impacts occur when equipment is brought into an area on a short-term basis, such as for fire-line construction, and the remedial treatment takes place shortly thereafter.
  • the expression, “legacy compaction” as used herein refers to compaction from previous activities, particularly those involving operating heavy equipment on the soil surface.
  • legacy compaction examples include repeated travel on road fill skill trails, dozer pile slash treatment and soil deposition from erosion that occurs over a work site at the toe of a hill. Whereas compaction from new impacts typically resides 4-18′′ below the soil surface, legacy compaction may be deeper, and also may be accompanied by hardpan formation.
  • restoration activities include obliteration of forest roads, new temporary roads, skid trails and landings and reduction of timber harvest legacy decompaction.
  • Compaction has been associated with reduced mycorrhizal abundance and diversity in certain tree species, and also with ultimate growth rates and overall alteration of vegetation type.
  • Restorative activities have conventionally required at least two pieces of heavy equipment and two entries.
  • An excavator is used for the removal of culverts, creating waterbars, and recontouring of the road in sloped landscapes (excavation pullback of the fill slope).
  • subsoiling is done with a dozer pulling an agricultural subsoiling implement or dozer-mounted ripper system.
  • Pratt (U.S. Pat. No. 6,490,815) shows an excavating bucket having a single ripping tooth or a pair of ripping teeth projecting rearwardly from the rear wall of the bucket.
  • the motion for functional operation of the ripper is opposite that of the bucket.
  • the operator In making a sweeping motion, the operator is able to alternatively break up hard material and scoop it up for removal.
  • each subsoiler shank is secured to an extension of bucket sidewall that functions as a coulter blade for cutting through organic matter.
  • Another object of the invention is to provide a single implement for subsoiling and contouring sloping terrain.
  • FIG. 1 is a side elevation view of the multi-purpose bucket of the invention with the subsoiling shanks attached.
  • FIG. 2 is a back view of the multi-purpose bucket of the invention without the subsoiling shanks attached.
  • FIG. 3 is a front view of the multi-purpose bucket of the invention without the bucket teeth attached.
  • FIG. 4 is a perspective view of the multi-purpose bucket/subsoiler of the invention attached to an excavator boom.
  • FIG. 5A is a schematic representation of the subsoiling pattern created by a subsoiling implement attached to a dozer moving through a unit being restored.
  • FIG. 5B is a schematic representation of the subsoiling pattern created by the combination excavator bucket and subsoiler of the invention moving though a unit being restored.
  • FIG. 5C is a schematic representation of the pattern created by the combination excavator bucket and subsoiler of the invention during road obliteration and decompaction.
  • an excavating bucket in operation can assume a large variety of positions relative to a given point of reference, such as the ground or the horizon.
  • a given point of reference such as the ground or the horizon.
  • the open end of the bucket will be considered the front, and the opposite end of the bucket the rear.
  • the bucket attaches to the boom of the excavator implement at its top, and the opposing side of the bucket is considered to be the bottom.
  • the bucket is usually the leading edge at the bottom of the bucket that is the first to contact the ground.
  • bucket 1 comprises opposing side walls 2 joined by a generally concave pan 4 .
  • the opposing side walls will typically be parallel or substantially parallel to one another, but may also be tapered toward the front, rear, top or bottom of the bucket.
  • the pan 4 has a leading edge 14 that may be the terminal edge of the pan itself, or alternatively may comprise a separate piece of reinforcing material welded to the pan or otherwise securely attached.
  • the leading edge 14 may also be fitted with teeth (not shown).
  • the pan 4 also comprises a trailing edge 5 at the opposite extremity of the pan from the leading edge 14 . Referring to FIGS.
  • the trailing edge 5 is near mounting members 7 , each having a front aperture (bearing) 8 and a rear aperture 9 (bearing) for mounting of the bucket to the appropriate linkages of an articulated excavator boom 40 shown in FIG. 4 .
  • the leading and trailing edges of pan 4 as well as the front edges of side walls 2 that are in proximity to the leading and trailing edges, collectively form bucket opening 6 (FIGS. 1 and 3 ).
  • Each of the side walls 2 comprises a shank socket 20 (FIGS. 1 and 2 ).
  • the shank socket may be formed by an exterior plate 21 and an interior plate 22 enclosing cutout 23 in side wall 2 .
  • the open end of socket 20 and bucket opening 6 are oriented in generally opposite directions from one another.
  • Each socket 20 is adapted to receive and secure the proximal end of subsoiling shank 24 .
  • the distal end of each shank is a substantially pointed earth-working tool, such as a hardened, abrasion-resistant ripper point 25 having one or more wing tips 26 , the upper working surfaces of which lie in a plane substantially perpendicular to the plane of penetration of each subsoiling shank as visible in FIG. 4 .
  • the shank is inserted into the open end of the socket and will typically be held in place in the socket by means of suitable fasteners that permit easy removal and replacement of the shank.
  • the shank length is sufficient to subsoil at a depth of approximately 24-30′′, and the shanks are positioned on the side walls of the bucket so that the distal ends of the ripper points 25 extend approximately 1-3′′ beyond the plane of the bucket bottom.
  • the upper working surface of the ripper points 25 and the wing tips 26 are preferably oriented at an angle of approximately 70° ( ⁇ 10°) relative to the plane in which the bucket bottom lies.
  • the shanks for subsoiling can be standard commercial parts (e.g. John Deere® part number A24206) or similar fabricated steel shanks, typically having a curvilinear profile.
  • the shank length and degree of curvature will determine the maximum depth of subsoiling.
  • the equipment operator can control the depth of penetration into the soil, and thus the actual depth of de-compaction.
  • the maximum operating depth can be controlled by means of both the shank length and operator control. It is also envisioned that the subsoiling depth can be varied by providing multiple mount positions within the socket.
  • ripper points on the subsoiling shanks can be standard commercial parts, such as John Deere® 5′′ or 7′′ sweeps.
  • the size and angle/slope of wing tips can vary depending upon desired lateral fracture of compacted soil being treated.
  • the bucket side walls 2 each comprise an extension exterior of pan 4 (FIG. 1 ).
  • This extension tapers from the pan toward the open end of the socket 20 so as to form a sharpened, coulter blade 31 above and forward of the leading edge of the subsoiler (when the subsoiler is oriented in the subsoiling mode) as illustrated in FIG. 1 .
  • the coulter blade leads the subsoiling shank through the soil, cutting grass mats and organic matter, surface or subsurface roots, downed tree branches, etc. Positioning of the coulter blades between the bottom of the bucket and the shanks also serves to extend the maximum effective subsoiling depth.
  • the implement or implement coupling is equipped with a vertical orientation device (not shown) to provide feedback to the operator in regard to the attitude of the subsoiling shanks with respect to the soil surface.
  • the orientation device may consist of a simple visual indicator, or may comprise an electrical and/or electronic device, such as a mercury switch and logic circuit with visual, auditory or other sensory signal as known in the art.
  • the articulated excavator boom 40 shown in FIG. 4 may also be equipped with a thumb 41 such as that described by Pisco, U.S. Pat. No. 5,813,822, herein incorporated by reference.
  • the implement described above has two modes of operation, excavation and subsoiling.
  • the operator By pivoting the implement at the end of the excavator boom, the operator can alternate from one mode to the other.
  • one mode of the implement is oriented in an operable position, the other is in an “idle” position.
  • the boom is extended away from the excavator, the bucket is pivoted to the closed position (open end upward), thereby employing the distal ends of the subsoiling shanks into the proper position for movement through the soil: in a plane beneath, and generally parallel to, the soil surface.
  • the implement is lowered toward the ground until the shanks penetrate the soil to the desired depth.
  • the point-forward subsoiler shank curvature tends to draw the shanks down into the soil so that the proximal ends of the shanks are substantially perpendicular to the ground and distal ends are substantially parallel to the ground.
  • the earth-working ends move through the soil along a path that is in a plane beneath, and generally parallel to, the soil surface.
  • the desired effect of the subsoiling operation is obtained when the path of the earth-working ends is below the level of hardpan or other soil compaction.
  • the depth of the plane should be sufficient to allow vegetation and tree roots adequate depth of soil decompaction to thrive.
  • the curvilinear shanks and wing tips impart an uplifting of the entire column of soil above the subsoiling shank and cause a fracturing of the hardpan and other soil strata.
  • the lifting of the soil column takes advantage of the plate-like compacted soil structure to extend the lateral fracture to approximately 7-12 inches to either side (depending upon soil type and wing tip selection) from the centerline of the subsoiling shanks. The result is both a vertical and lateral decrease in the bulk density (or loosening) of the soil profile.
  • the equipment operator When a sizeable object such as a large root or tree branch is encountered during the subsoiling operation, the equipment operator obtains optimal functionality of the coulter blade by tilting the bucket opening toward the ground, thereby pinning the object against the soil on the opposite side of the object from the coulter blade. This has the effect of imparting a guillotine action and enhancing the downward, shearing force on the object.
  • the paired coulter blades and shanks cooperate with one another and serve to stabilize longer pieces of debris that exceed the breadth of the bucket while being subjected to shearing forces.
  • Shearing the debris prevents it from being pulled through the soil or across the soil surface by the subsoiling shanks, thereby helping to preserve the integrity of the topsoil or other soil stratum.
  • the open end of the bucket is pivoted downward with the subsoiler shanks positioned above grade.
  • the attitude of the boom can be controlled so that the trailing subsoilers will re-enter the soil, thereby loosening it in advance of the next pass of the bucket.
  • the subsoiling and excavation operations are sequentially accomplished in a single sweep of the boom. Both the subsoiling and excavation can be conducted through the normal range of operation of the excavator boom. In areas of clayey soils and rock strata, the operations of subsoiling and excavation would typically be conducted independently of one another.
  • the bucket/subsoiler of this invention may be used with any make of excavator, optimally one that is greater than 43,000 pounds and up to about 50,000 pounds gross vehicle weight rating (GVWR) to allow for adequate hydraulic power and excavator ability needed to obtain the full functional capacity.
  • GVWR gross vehicle weight rating
  • This implement can vary from basic excavation needs without subsoiling to full obliteration of a road.
  • Other potential uses are to rehabilitate forested environments, skid trail and temporary logging road decommissioning, treatment of small and large scale acreage legacy compaction associated with prior timber harvest and land management activities, wildland fire suppression efforts or suppression rehabilitation, BAER work (Burned Area Emergency Rehabilitation); non-forested environments such as wetland reclamation, urban rehabilitation and creation (roads to trails and roads to parks) of green spaces and contractor needs for utility trenching and building foundation, road and street construction.
  • the subsoiler bucket-equipped excavator would be the last machine to leave a project area, preventing the creation of new compaction or leaving legacy impacts untreated. By erasing the footprint of all previous and current equipment impacts the inevitable lag time between management activity and restoration is shortened or eliminated.
  • FIG. 5B the subsoiling pattern in a broad area produced by the bucket/subsoiler of the invention as it moves through the area (as shown by arrows) is depicted in comparison to that produced by a dozer ( FIG. 5A ) .
  • the subsoiling pattern for a road being decommissioned by the invention is illustrated in FIG. 5 C. After the area is subsoiled, oversized organic material (logs, tree stumps, small trees, brush or boulders) is returned onto the restored landscape. Typically, planting is scheduled for the following year to allow for subsidence of treated soil.

Abstract

An excavator bucket adapted to receive subsoiler shanks and an optional coulter blade enables multiple treatment of compacted soil. In a preferred embodiment, the shanks depend downward below the bucket and curve forward toward the bottom of the bucket. The shanks allow a single implement to be used for both excavating and subsoiling, and also for contouring sloping terrain. One application for such an implement is for decommissioning forest roads without the need for multiple pieces of heavy equipment or for multiple entries into the treatment area.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This invention is related to provisional application 60/448,776, filed Feb. 20, 2003 and also to commonly-owned application assignable to the United States of America, as Represented by the Secretary of Agriculture, having the title “Subsoiling Grapple Rake” and Ser. No. 10/781,612 and naming James Geronimo Archuleta, Jr. and Michael William Karr as inventors, both herein incorporated by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a multi-purpose implement for conducting dissimilar forest and soil management activities, including excavation and subsoiling (especially as related to soil productivity and restoration). The invention finds particular application in the decommissioning of forest roads, new temporary roads, skid trails and landings logging roads and in the growth and vigor of natural and planted trees and forage shrubs expected to grow on decommissioned roads. New impacts occur when equipment is brought into an area on a short-term basis, such as for fire-line construction, and the remedial treatment takes place shortly thereafter. The expression, “legacy compaction” as used herein refers to compaction from previous activities, particularly those involving operating heavy equipment on the soil surface. Examples of situations that lead to legacy compaction include repeated travel on road fill skill trails, dozer pile slash treatment and soil deposition from erosion that occurs over a work site at the toe of a hill. Whereas compaction from new impacts typically resides 4-18″ below the soil surface, legacy compaction may be deeper, and also may be accompanied by hardpan formation.
2. Description of the Prior Art
Following timber harvesting, restoration activities include obliteration of forest roads, new temporary roads, skid trails and landings and reduction of timber harvest legacy decompaction. Compaction has been associated with reduced mycorrhizal abundance and diversity in certain tree species, and also with ultimate growth rates and overall alteration of vegetation type. Restorative activities have conventionally required at least two pieces of heavy equipment and two entries. An excavator is used for the removal of culverts, creating waterbars, and recontouring of the road in sloped landscapes (excavation pullback of the fill slope). In a separate operation, subsoiling is done with a dozer pulling an agricultural subsoiling implement or dozer-mounted ripper system. This approach to subsoiling reduces compaction, but does not allow return of organic matter to the soil. Also, mats of organic matter tend to accumulate under the agricultural implement, resulting in a loss of organic matter from the soil resource. Moreover, the narrowness of forest system roads restricts the dozer-driven subsoiler movement to straight-line travel down the road being decommissioned. This may result in subsurface “piping”, leading to failure of sloping surfaces.
Attempts have been made to do the combined work with excavators using standard buckets, log tongs, and grapple rakes. Though decompaction is accomplished and organic matter returned to the surface of treated soil, the resultant soil profile becomes mixed rather than lifted. When re-contouring the road prism, subsoiling the ditch line is often left undone, primarily as the result of short-sighted economics. Unfortunately, neglect of subsoiling the compacted ditchline can lead to subsurface routing and transport of water moving across slope, rather than down slope, or to subsurface water impounding.
Buckets having attached ripper tools for multi-functional earth-moving capabilities have been disclosed in the patent literature. For example, Larson (U.S. Pat. No. 5,456,028) shows a backhoe bucket having a single ripper attached to the same coupling element that secures the bucket to the end of a hydraulically powered boom. The result is concentration of the force provided by the boom to the ripper tip. Larson depicts various embodiments for coupling the ripper to the boom, but none are amenable to use with a “quick change” connector (tool coupler). Moreover, the pivotal mount of the ripper to the back of the bucket is susceptible to eventual stress failure. In Pub. No. US 2003/0167661, Larson discloses an improvement in which the ripper is secured to a tool coupler to permit its use with a wide variety of interchangeable excavation tools.
Pratt (U.S. Pat. No. 6,490,815) shows an excavating bucket having a single ripping tooth or a pair of ripping teeth projecting rearwardly from the rear wall of the bucket. By virtue of this design, the motion for functional operation of the ripper is opposite that of the bucket. In making a sweeping motion, the operator is able to alternatively break up hard material and scoop it up for removal.
SUMMARY OF THE INVENTION
We have now devised an excavator bucket equipped with sidewall-supported subsoiler shanks that enter the soil and loosen the compacted soil profile as the excavator bucket is used to remove soil. When the bucket returns to excavate the primed area, there is less torque needed from the equipment to remove the loosened soil. In a preferred embodiment of the invention, each subsoiler shank is secured to an extension of bucket sidewall that functions as a coulter blade for cutting through organic matter.
It is an object of this invention to provide a durable, multi-purpose implement and method for excavation and subsoiling, and optionally for cutting through organic materials.
It is also an object of the invention to provide a multi-purpose implement and method that can simultaneously conduct the activities of excavation and subsoiling without additional labor and equipment cost, and thereby reduce the cost of restoration.
It is also an object of the invention to provide an approach for decommissioning forest system roads without the need for two different pieces of heavy equipment.
Another object of the invention is to provide a single implement for subsoiling and contouring sloping terrain.
Other objects and advantages of this invention will become readily apparent from the ensuing description.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 is a side elevation view of the multi-purpose bucket of the invention with the subsoiling shanks attached.
FIG. 2 is a back view of the multi-purpose bucket of the invention without the subsoiling shanks attached.
FIG. 3 is a front view of the multi-purpose bucket of the invention without the bucket teeth attached.
FIG. 4 is a perspective view of the multi-purpose bucket/subsoiler of the invention attached to an excavator boom.
FIG. 5A is a schematic representation of the subsoiling pattern created by a subsoiling implement attached to a dozer moving through a unit being restored.
FIG. 5B is a schematic representation of the subsoiling pattern created by the combination excavator bucket and subsoiler of the invention moving though a unit being restored.
FIG. 5C is a schematic representation of the pattern created by the combination excavator bucket and subsoiler of the invention during road obliteration and decompaction.
DETAILED DESCRIPTION
It is understood that an excavating bucket in operation can assume a large variety of positions relative to a given point of reference, such as the ground or the horizon. For purposes of the ensuing discussion, the open end of the bucket will be considered the front, and the opposite end of the bucket the rear. The bucket attaches to the boom of the excavator implement at its top, and the opposing side of the bucket is considered to be the bottom. When the bucket is used in a conventional digging operation, it is usually the leading edge at the bottom of the bucket that is the first to contact the ground.
As best illustrated in FIGS. 1 and 4, bucket 1 comprises opposing side walls 2 joined by a generally concave pan 4. The opposing side walls will typically be parallel or substantially parallel to one another, but may also be tapered toward the front, rear, top or bottom of the bucket. The pan 4 has a leading edge 14 that may be the terminal edge of the pan itself, or alternatively may comprise a separate piece of reinforcing material welded to the pan or otherwise securely attached. The leading edge 14 may also be fitted with teeth (not shown). The pan 4 also comprises a trailing edge 5 at the opposite extremity of the pan from the leading edge 14. Referring to FIGS. 1 and 3, the trailing edge 5 is near mounting members 7, each having a front aperture (bearing) 8 and a rear aperture 9 (bearing) for mounting of the bucket to the appropriate linkages of an articulated excavator boom 40 shown in FIG. 4. The leading and trailing edges of pan 4, as well as the front edges of side walls 2 that are in proximity to the leading and trailing edges, collectively form bucket opening 6 (FIGS. 1 and 3).
Each of the side walls 2 comprises a shank socket 20 (FIGS. 1 and 2). The shank socket may be formed by an exterior plate 21 and an interior plate 22 enclosing cutout 23 in side wall 2. The open end of socket 20 and bucket opening 6 are oriented in generally opposite directions from one another. Each socket 20 is adapted to receive and secure the proximal end of subsoiling shank 24. The distal end of each shank is a substantially pointed earth-working tool, such as a hardened, abrasion-resistant ripper point 25 having one or more wing tips 26, the upper working surfaces of which lie in a plane substantially perpendicular to the plane of penetration of each subsoiling shank as visible in FIG. 4. The shank is inserted into the open end of the socket and will typically be held in place in the socket by means of suitable fasteners that permit easy removal and replacement of the shank. In the preferred embodiment, the shank length is sufficient to subsoil at a depth of approximately 24-30″, and the shanks are positioned on the side walls of the bucket so that the distal ends of the ripper points 25 extend approximately 1-3″ beyond the plane of the bucket bottom. Also, the upper working surface of the ripper points 25 and the wing tips 26 are preferably oriented at an angle of approximately 70° (±10°) relative to the plane in which the bucket bottom lies.
The shanks for subsoiling can be standard commercial parts (e.g. John Deere® part number A24206) or similar fabricated steel shanks, typically having a curvilinear profile. The shank length and degree of curvature will determine the maximum depth of subsoiling. With a given set of shanks, the equipment operator can control the depth of penetration into the soil, and thus the actual depth of de-compaction. Depending on the depth of compaction and the subsurface strata (e.g. rock), the maximum operating depth can be controlled by means of both the shank length and operator control. It is also envisioned that the subsoiling depth can be varied by providing multiple mount positions within the socket. The use of ripper points on the subsoiling shanks can be standard commercial parts, such as John Deere® 5″ or 7″ sweeps. The size and angle/slope of wing tips can vary depending upon desired lateral fracture of compacted soil being treated.
In a preferred embodiment of the invention, the bucket side walls 2 each comprise an extension exterior of pan 4 (FIG. 1). This extension tapers from the pan toward the open end of the socket 20 so as to form a sharpened, coulter blade 31 above and forward of the leading edge of the subsoiler (when the subsoiler is oriented in the subsoiling mode) as illustrated in FIG. 1. The coulter blade leads the subsoiling shank through the soil, cutting grass mats and organic matter, surface or subsurface roots, downed tree branches, etc. Positioning of the coulter blades between the bottom of the bucket and the shanks also serves to extend the maximum effective subsoiling depth. In one embodiment of the invention, the implement or implement coupling is equipped with a vertical orientation device (not shown) to provide feedback to the operator in regard to the attitude of the subsoiling shanks with respect to the soil surface. The orientation device may consist of a simple visual indicator, or may comprise an electrical and/or electronic device, such as a mercury switch and logic circuit with visual, auditory or other sensory signal as known in the art. The articulated excavator boom 40 shown in FIG. 4 may also be equipped with a thumb 41 such as that described by Pisco, U.S. Pat. No. 5,813,822, herein incorporated by reference.
The implement described above has two modes of operation, excavation and subsoiling. By pivoting the implement at the end of the excavator boom, the operator can alternate from one mode to the other. Thus, while one mode of the implement is oriented in an operable position, the other is in an “idle” position. During subsoiling, the boom is extended away from the excavator, the bucket is pivoted to the closed position (open end upward), thereby employing the distal ends of the subsoiling shanks into the proper position for movement through the soil: in a plane beneath, and generally parallel to, the soil surface. The implement is lowered toward the ground until the shanks penetrate the soil to the desired depth. As the boom draws the implement toward the excavator, the point-forward subsoiler shank curvature tends to draw the shanks down into the soil so that the proximal ends of the shanks are substantially perpendicular to the ground and distal ends are substantially parallel to the ground. As the shanks slice through the soil, the earth-working ends move through the soil along a path that is in a plane beneath, and generally parallel to, the soil surface. The desired effect of the subsoiling operation is obtained when the path of the earth-working ends is below the level of hardpan or other soil compaction. Thus, the depth of the plane should be sufficient to allow vegetation and tree roots adequate depth of soil decompaction to thrive. During movement of the subsoiler shanks through a zone of hardpan or soil compaction, the curvilinear shanks and wing tips impart an uplifting of the entire column of soil above the subsoiling shank and cause a fracturing of the hardpan and other soil strata. The lifting of the soil column takes advantage of the plate-like compacted soil structure to extend the lateral fracture to approximately 7-12 inches to either side (depending upon soil type and wing tip selection) from the centerline of the subsoiling shanks. The result is both a vertical and lateral decrease in the bulk density (or loosening) of the soil profile.
When a sizeable object such as a large root or tree branch is encountered during the subsoiling operation, the equipment operator obtains optimal functionality of the coulter blade by tilting the bucket opening toward the ground, thereby pinning the object against the soil on the opposite side of the object from the coulter blade. This has the effect of imparting a guillotine action and enhancing the downward, shearing force on the object. The paired coulter blades and shanks cooperate with one another and serve to stabilize longer pieces of debris that exceed the breadth of the bucket while being subjected to shearing forces. Shearing the debris prevents it from being pulled through the soil or across the soil surface by the subsoiling shanks, thereby helping to preserve the integrity of the topsoil or other soil stratum. Prior to lifting the subsoilers from the soil, it is desirable to retreat the boom a short distance along the previously subsoiled path so that the wing tips are raised through soil that is already fractured. This avoids catching the tips on rocks and other firmly entrenched objects that would tend to result in breakage of the tips and helps prevent soil displacement and mixing.
If it is necessary to excavate the subsoiled area, then the open end of the bucket is pivoted downward with the subsoiler shanks positioned above grade. As the bucket is drawn into the soil, filled and pivoted back into an upright orientation, the attitude of the boom can be controlled so that the trailing subsoilers will re-enter the soil, thereby loosening it in advance of the next pass of the bucket. In this fashion, the subsoiling and excavation operations are sequentially accomplished in a single sweep of the boom. Both the subsoiling and excavation can be conducted through the normal range of operation of the excavator boom. In areas of clayey soils and rock strata, the operations of subsoiling and excavation would typically be conducted independently of one another.
The bucket/subsoiler of this invention may be used with any make of excavator, optimally one that is greater than 43,000 pounds and up to about 50,000 pounds gross vehicle weight rating (GVWR) to allow for adequate hydraulic power and excavator ability needed to obtain the full functional capacity.
The application of this implement can vary from basic excavation needs without subsoiling to full obliteration of a road. Other potential uses are to rehabilitate forested environments, skid trail and temporary logging road decommissioning, treatment of small and large scale acreage legacy compaction associated with prior timber harvest and land management activities, wildland fire suppression efforts or suppression rehabilitation, BAER work (Burned Area Emergency Rehabilitation); non-forested environments such as wetland reclamation, urban rehabilitation and creation (roads to trails and roads to parks) of green spaces and contractor needs for utility trenching and building foundation, road and street construction.
The subsoiler bucket-equipped excavator would be the last machine to leave a project area, preventing the creation of new compaction or leaving legacy impacts untreated. By erasing the footprint of all previous and current equipment impacts the inevitable lag time between management activity and restoration is shortened or eliminated. In FIG. 5B, the subsoiling pattern in a broad area produced by the bucket/subsoiler of the invention as it moves through the area (as shown by arrows) is depicted in comparison to that produced by a dozer (FIG. 5A) . The subsoiling pattern for a road being decommissioned by the invention is illustrated in FIG. 5C. After the area is subsoiled, oversized organic material (logs, tree stumps, small trees, brush or boulders) is returned onto the restored landscape. Typically, planting is scheduled for the following year to allow for subsidence of treated soil.
All references disclosed herein or relied upon in whole or in part in the description of the invention are incorporated by reference.

Claims (6)

1. An earth-working bucket adapted for conversion to a combination excavator and subsoiler implement and further adapted for pivotal attachment to an excavating machine, comprising:
(a) opposing side walls joined by a generally concave pan, said pan having a leading edge at the bottom of the bucket and a trailing edge at the top of the bucket, and each of said side walls having an edge in proximity to said leading pan edge and trailing pan edge, wherein together said leading pan edge, trailing pan edge and said side wall edges define a bucket opening, and further wherein each of said opposing side walls comprises an extension that is exterior to said pan and is tapered toward said open end of the socket, said extension comprising a coulter blade having a smooth shearing edge;
(b) pivotal attachment means secured to the top of said bucket and;
(c) a shank socket incorporated into each of said opposing side walls and having an open end, said socket adapted to receive and secure a proximal end of a subsoiling shank having a substantially pointed, earth-working distal end, wherein said open end of said socket and said bucket opening are oriented in generally opposite directions from one another.
2. The earth-working bucket of claim 1, wherein said shank socket is adapted to receive at least one removable fastener for securing said subsoiling shank within said socket.
3. The earth-working bucket of claim 1, and further comprising a subsoiling shank secured within said shank socket.
4. The earth-working bucket of claim 3, wherein said subsoiling shank lies substantially in a first plane and comprises at least one wing lying in a second plane that is substantially perpendicular to said first plane.
5. The earth-working bucket of claim 4, wherein the bottom of the bucket lies in a third plane and the distal end of said subsoiling shank extends from the shank socket to beyond said third plane.
6. The earth-working bucket of claim 3, wherein said subsoiling shank has a curvilinear profile.
US10/781,487 2003-02-20 2004-02-18 Subsoiling excavator bucket Expired - Fee Related US7059072B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/781,487 US7059072B2 (en) 2003-02-20 2004-02-18 Subsoiling excavator bucket
PCT/US2004/004870 WO2004073382A2 (en) 2003-02-20 2004-02-19 Subsoiling excavator bucket
AU2004213013A AU2004213013B2 (en) 2003-02-20 2004-02-19 Subsoiling excavator bucket
CA2515960A CA2515960C (en) 2003-02-20 2004-02-19 Subsoiling excavator bucket

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US44877603P 2003-02-20 2003-02-20
US10/781,487 US7059072B2 (en) 2003-02-20 2004-02-18 Subsoiling excavator bucket

Publications (2)

Publication Number Publication Date
US20040187364A1 US20040187364A1 (en) 2004-09-30
US7059072B2 true US7059072B2 (en) 2006-06-13

Family

ID=32912307

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/781,487 Expired - Fee Related US7059072B2 (en) 2003-02-20 2004-02-18 Subsoiling excavator bucket

Country Status (4)

Country Link
US (1) US7059072B2 (en)
AU (1) AU2004213013B2 (en)
CA (1) CA2515960C (en)
WO (1) WO2004073382A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090199440A1 (en) * 2008-02-08 2009-08-13 Galbreath Guy Randall Soil fracturing tool
US20100242701A1 (en) * 2006-09-08 2010-09-30 Tajiri Raymond Y Ripper blade for use on hydraulic arm and method for storage tank demolition
US20100319225A1 (en) * 2009-06-22 2010-12-23 Namon Ii Richard Digging/trenching attachment or assembly that is horizontally movable with detachable tree boom for pivoting front end loader type machines
US8994519B1 (en) * 2010-07-10 2015-03-31 William Fuchs Method of controlling a vegetation removal system
US20180066418A1 (en) * 2015-03-25 2018-03-08 Wedgelock Equipment Limited A Visual Indicator for a Coupler
US10024029B1 (en) * 2017-06-28 2018-07-17 Jaime Ruiz Demolition system
US10227752B2 (en) * 2013-11-06 2019-03-12 Génix Développement Aero-excavation apparatus and method of operating the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8550745B2 (en) 2005-04-25 2013-10-08 Rockland, Inc. Apparatus and method for compacting and conditioning a tract of ground
GB2532782B (en) * 2014-11-28 2017-11-01 Cousins Of Emneth Ltd Apparatus for use on agricultural machinery
ES2593952B2 (en) * 2015-06-12 2017-09-07 Universidad De Almería Mechanical implement for bivalve bucket and its use in the execution of large diameter vertical wells
CN105040760A (en) * 2015-07-09 2015-11-11 三一重型装备有限公司 Multifunctional scraper box and digging device
CN105065006A (en) * 2015-08-26 2015-11-18 中冶建工集团有限公司 Bucket and excavator
CN110073737B (en) * 2019-06-04 2023-11-17 吉林大学 Bionic subsoiler with drag reduction bionic surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3685404A (en) * 1970-07-24 1972-08-22 Thiokol Chemical Corp Multi-way snow grooming apparatus for ski slopes
US3724899A (en) * 1971-05-14 1973-04-03 H Clark Tooth for backhoe bucket
US4041624A (en) * 1974-04-17 1977-08-16 Caterpillar Tractor Co. Integral rippers for hydraulic excavator bucket
US4845867A (en) 1988-03-14 1989-07-11 Wausau Machine And Technology, Inc. Triple-purpose attachment
US5456028A (en) 1993-08-23 1995-10-10 Larson; David S. Backhoe bucket ripper attachment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9602798L (en) * 1996-07-17 1998-01-18 Stig Pettersson Bucket
US6490815B1 (en) * 2000-02-01 2002-12-10 Rockland, Inc. Excavator bucket with ripping implement
US6671984B2 (en) * 2002-03-06 2004-01-06 David S. Larson Ripper attachment for an excavation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3685404A (en) * 1970-07-24 1972-08-22 Thiokol Chemical Corp Multi-way snow grooming apparatus for ski slopes
US3724899A (en) * 1971-05-14 1973-04-03 H Clark Tooth for backhoe bucket
US4041624A (en) * 1974-04-17 1977-08-16 Caterpillar Tractor Co. Integral rippers for hydraulic excavator bucket
US4845867A (en) 1988-03-14 1989-07-11 Wausau Machine And Technology, Inc. Triple-purpose attachment
US5456028A (en) 1993-08-23 1995-10-10 Larson; David S. Backhoe bucket ripper attachment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100242701A1 (en) * 2006-09-08 2010-09-30 Tajiri Raymond Y Ripper blade for use on hydraulic arm and method for storage tank demolition
US8371049B2 (en) * 2006-09-08 2013-02-12 Tajiri Lumber Ltd. Ripper blade for use on hydraulic arm and method for storage tank demolition
US20090199440A1 (en) * 2008-02-08 2009-08-13 Galbreath Guy Randall Soil fracturing tool
US7793443B2 (en) 2008-02-08 2010-09-14 Galbreath Guy Randall Soil fracturing tool
US20100319225A1 (en) * 2009-06-22 2010-12-23 Namon Ii Richard Digging/trenching attachment or assembly that is horizontally movable with detachable tree boom for pivoting front end loader type machines
US8994519B1 (en) * 2010-07-10 2015-03-31 William Fuchs Method of controlling a vegetation removal system
US10227752B2 (en) * 2013-11-06 2019-03-12 Génix Développement Aero-excavation apparatus and method of operating the same
US20180066418A1 (en) * 2015-03-25 2018-03-08 Wedgelock Equipment Limited A Visual Indicator for a Coupler
US10590631B2 (en) * 2015-03-25 2020-03-17 Wedgelock Equipment Limited Visual indicator for a coupler
US10024029B1 (en) * 2017-06-28 2018-07-17 Jaime Ruiz Demolition system

Also Published As

Publication number Publication date
WO2004073382A2 (en) 2004-09-02
WO2004073382A3 (en) 2005-05-19
WO2004073382B1 (en) 2005-06-16
AU2004213013B2 (en) 2008-05-22
AU2004213013A1 (en) 2004-09-02
US20040187364A1 (en) 2004-09-30
CA2515960C (en) 2012-05-08
CA2515960A1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US4327509A (en) Ripper tooth attachment for a back hoe
US7059072B2 (en) Subsoiling excavator bucket
CA2521725C (en) Multi-shank ripper
US7992329B2 (en) Single pointed ripper bucket excavation tool
US4038766A (en) Excavator bucket ripper tool
US7086184B2 (en) Subsoiling grapple rake
US20060156590A1 (en) Tree root pruning apparatus and method of use
US6490815B1 (en) Excavator bucket with ripping implement
US20220018091A1 (en) Land plane attachment with mechanical ripper
US7562473B2 (en) Material-handling bucket with scraper blade
US5943798A (en) Method of and apparatus for trenching
US20080016725A1 (en) Universal digging attachment for skid loaders
US20060283055A1 (en) Subsoiling brush cutter hitch
KR101716364B1 (en) Shovel using excavator
CN109024727B (en) Scraper bowl structure of bull-dozer
CN214143860U (en) Bulldozer for forest work
CN210491589U (en) Multifunctional ground-hinging scarifier
GB2248646A (en) Cultivation implement
CN213539108U (en) Multifunctional slope brushing shovel
CN212065164U (en) Digging shovel for nursery stock transplantation
US7124522B2 (en) Cultivating tool and apparatus incorporating same
US20130219757A1 (en) Mounting plate attachment for excavating device
JP2006077477A (en) Ditch digging work machine used for forming simple drainage ditch
AU742186B2 (en) Excavation bucket
MX2007006237A (en) Multi-shank ripper.

Legal Events

Date Code Title Description
AS Assignment

Owner name: AGRICULTURE, UNITED STATES OF AMERICA, AS REPRESEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARCHULETA, JAMES G., JR.;KARR, MICHAEL W.;REEL/FRAME:014995/0421

Effective date: 20040212

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140613